Journal of Psychopathology and Clinical Science
The Hierarchical Taxonomy of Psychopathology (HiTOP) and the search for neurobiological substrates of mental illness: A systematic review and roadmap for future research
--Manuscript Draft--

<table>
<thead>
<tr>
<th>Manuscript Number:</th>
<th>ABN-2023-0223R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title:</td>
<td>The Hierarchical Taxonomy of Psychopathology (HiTOP) and the search for neurobiological substrates of mental illness: A systematic review and roadmap for future research</td>
</tr>
<tr>
<td>Abstract:</td>
<td>Understanding the neurobiological mechanisms involved in psychopathology has been hindered by the limitations of categorical nosologies. The Hierarchical Taxonomy of Psychopathology (HiTOP) is an alternative dimensional system for characterizing psychopathology, derived from quantitative studies of covariation among diagnoses and symptoms. HiTOP provides more promising targets for clinical neuroscience than traditional psychiatric diagnoses and can facilitate cumulative integration of existing research. We systematically reviewed 164 human neuroimaging studies with sample sizes of 194 or greater that have investigated dimensions of psychopathology classified within HiTOP. Replicated results were identified for constructs at five different levels of the hierarchy, including the overarching p-factor, the externalizing superspectrum, the thought disorder and internalizing spectra, the distress subfactor, and the depression symptom dimension. Our review highlights the potential of dimensional clinical neuroscience research and the usefulness of HiTOP, while also suggesting limitations of existing work in this relatively young field. We discuss how HiTOP can be integrated synergistically with neuroscience-oriented, transdiagnostic frameworks developed by the National Institutes of Health, including the Research Domain Criteria (RDoC), Addictions Neuroclinical Assessment (ANA), and NIDA Phenotyping Assessment Battery (NIDA PhAB), and how researchers can use HiTOP to accelerate clinical neuroscience research in humans and other species.</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Special Section Article (Unmasked Review)</td>
</tr>
</tbody>
</table>
| Corresponding Author: | Colin G. DeYoung, PhD
University of Minnesota Twin Cities: University of Minnesota
Minneapolis, MN UNITED STATES |
| Corresponding Author E-Mail: | cdeyoung@umn.edu |
| Corresponding Author's Institution: | University of Minnesota Twin Cities: University of Minnesota |
| Other Authors: | Scott D. Blain, PhD
Robert D. Latzman, PhD
Rachael G. Grazioplene, PhD
John D. Haltigan, PhD
Roman Kotov, PhD
Giorgia Michelini, PhD
Noah C. Venables, PhD
Anna R. Docherty, PhD
Vina M. Goghari, PhD
Alexander M. Kallen, B.S.
Elizabeth A. Martin, PhD
Isabella M. Palumbo, B.A.
Christopher J. Patrick, PhD
Emily R. Perkins, PhD |

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation
<table>
<thead>
<tr>
<th>First Author:</th>
<th>Colin G. DeYoung, PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order of Authors</td>
<td></td>
</tr>
<tr>
<td>Secondary Information</td>
<td></td>
</tr>
<tr>
<td>Manuscript Region of</td>
<td>UNITED STATES</td>
</tr>
<tr>
<td>Origin:</td>
<td></td>
</tr>
<tr>
<td>Suggested Reviewers:</td>
<td></td>
</tr>
<tr>
<td>Opposed Reviewers:</td>
<td></td>
</tr>
<tr>
<td>Order of Authors:</td>
<td></td>
</tr>
<tr>
<td>Manuscript Classifications:</td>
<td>Endophenotypes; Psychophysiology</td>
</tr>
<tr>
<td>Additional Information:</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Have any other submitted or published papers reported on part or all of this data set (or a larger data-set of which yours is a subset)? *Answering “Yes” will not necessarily exclude this manuscript from publication, but does require justification.</td>
</tr>
<tr>
<td>Response</td>
<td>No</td>
</tr>
<tr>
<td>TOP Guidelines, Citation:</td>
<td>All data, program code, and other methods developed by others are appropriately cited in the text and listed in the</td>
</tr>
<tr>
<td>TOP Guidelines, Data Transparency: Article states whether the raw and/or processed data on which study conclusions are based are available and where to access them. If the data cannot be made available, the article states the legal or ethical reasons why they are not available.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOP Guidelines, Analytic Methods (Code) Transparency: Article states whether computer code or syntax needed to reproduce analyses in an article is available and where to access it. If it cannot be made available, the article states the legal or ethical reasons why it is not available.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information (optional): as follow-up to “TOP Guidelines, Citation: All data, program code, and other methods developed by others are appropriately cited in the text and listed in the references section.</th>
</tr>
</thead>
<tbody>
<tr>
<td>na</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information (optional): as follow-up to “TOP Guidelines, Data Transparency: Article states whether the raw and/or processed data on which study conclusions are based are available and where to access them. If the data cannot be made available, the article states the legal or ethical reasons why they are not available.</th>
</tr>
</thead>
<tbody>
<tr>
<td>na</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information (optional): as follow-up to “TOP Guidelines, Analytic Methods (Code) Transparency: Article states whether computer code or syntax needed to reproduce analyses in an article is available and where to access it. If it cannot be made available, the article states the legal or ethical reasons why it is not available.</th>
</tr>
</thead>
<tbody>
<tr>
<td>na</td>
</tr>
<tr>
<td>TOP Guidelines, Research Materials Transparency: Article states whether materials described in the method section are available and where to access them. If they cannot be made available, the article states the legal or ethical reasons why they are not available.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Additional information (optional): as follow-up to “TOP Guidelines, Research Materials Transparency: Article states whether materials described in the method section are available and where to access them. If they cannot be made available, the article states the legal or ethical reasons why they are not available.”</td>
</tr>
<tr>
<td>TOP Guidelines, Design and Analysis Transparency (Reporting Standards): Article must comply with APA Style Journal Article Reporting Standards (JARS).</td>
</tr>
<tr>
<td>Additional information (optional): as follow-up to “TOP Guidelines, Design and Analysis Transparency (Reporting Standards): Article must comply with APA Style Journal Article Reporting Standards (JARS).”</td>
</tr>
<tr>
<td>TOP Guidelines, Study Preregistration: Article states whether the study design and (if applicable) hypotheses of any of the work reported was preregistered and, if so, where to access it. Authors must submit a masked copy via stable link or supplemental material.</td>
</tr>
<tr>
<td>Additional information (optional): as follow-up to “TOP Guidelines, Study Preregistration: Article states whether the study design and (if applicable) hypotheses of any of the work reported was preregistered and, if so, where to access it. Authors must submit a masked copy via stable link or supplemental material.”</td>
</tr>
<tr>
<td>TOP Guidelines, Analysis Plan Preregistration: Article states whether any of the work reported preregistered an analysis plan and, if so, where to access it. Authors must submit a masked copy via stable link or supplemental material.</td>
</tr>
</tbody>
</table>
Additional Information (optional):

TOP Guidelines, Analysis Plan Preregistration: Article states whether any of the work reported preregistered an analysis plan and, if so, where to access it. Authors must submit a masked copy via stable link or supplemental material.

| Na |

Please review [APA's policies on generative AI](https://apastyle.apa.org/guidelines/supplemental-sections/ai-policy/) and confirm whether you have used artificial intelligence (AI) in the creation and/or editing of your manuscript. If you have used AI, you must include a disclosure in your methods section, a citation to the tool used in your reference list, and the full output of the AI in a supplemental material file.

| No, I have not used AI in the development of this manuscript |

If your paper is accepted, do you have any disclosures that would need to be listed on the [Full Disclosure of Interests form](https://apastyle.apa.org/guidelines/supplemental-sections/disclosure-policy/)? This includes any interests or activities that might be seen as influencing the research (e.g., financial interests in a test or procedure, funding by pharmaceutical companies for research).

| Yes, I have disclosures to report |

Please list your disclosures as follow-up to "If your paper is accepted, do you have any disclosures that would need to be listed on the [Full Disclosure of Interests form](https://apastyle.apa.org/guidelines/supplemental-sections/disclosure-policy/)? This includes any interests or activities that might be seen as influencing the research (e.g., financial interests in a test or procedure, funding by pharmaceutical companies for research)."

| Dr. Latzman is currently employed by Takeda Pharmaceuticals. No other authors report any biomedical financial interests or potential conflicts of interest. |
Dear Drs. Damme and Mittal,

Thank you for your feedback on our revised manuscript. We were pleased by your evaluation of our work and your judgment that it requires only minor additional revisions. Reviewer 1’s new suggestions were helpful and we believe that the changes we have made in response (described below) add value to the manuscript. Regarding Reviewer 3, we appreciate that you left it to us to decide whether and how to respond to his new comments. We did not feel that they warranted revising the manuscript, but we did appreciate the thorough analysis of our data that he undertook, and we have provided a detailed discussion of his concerns below.

Reviewer 1

R1.1) Thank you for the opportunity to review the revised manuscript, "The Hierarchical Taxonomy of Psychopathology (HiTOP) and the search for neurobiological substrates of mental illness: A systematic review and roadmap for future research". I feel the authors have adequately addressed all of the points I raised in my original review. In particular, I feel that the additional material in Table 1 and the discussion linking HiTOP, RDoC, and neurobiology are welcome additions that make the review's novel findings more clear and compelling. I appreciate the authors' thorough responses.

A) We are glad the reviewer found our revisions to be effective.

R1.2) I have one additional suggestion relating to the new material presented in Table 1. For readers who are not familiar with the details of the studies listed in this table, it would be helpful to include information on each sample's clinical/diagnostic status. I.e., is it a general population sample, a general population sample enriched for a certain kind of psychopathology (or psychopathology in general), or a clinical sample with multiple diagnoses represented (and if so, what are these diagnoses?). This material can be found in the supplemental material, but it may be worth reporting and interpreting in the main text. Some brief discussion of how the authors interpret findings on clinical phenomena in general population samples may also be useful. E.g., HiTOP constructs are assumed to be dimensional phenomena distributed in the general population, but they become clinically relevant when they are moderately to severely elevated compared to the population mean. If some findings were obtained from general population samples and others were obtained from clinical samples, how do the authors think about integrating these data? Is there an implicit assumption that relationships between HiTOP dimensions and brain processes are linear throughout the entire range of the distribution of HiTOP dimensions? If this is not the case, would this affect failures to replicate? How might restriction of range in clinical samples affect results or interpretation? Or, if the results in the review are primarily derived from general population samples, how does this affect their relevance for studies using clinical samples? Some discussion of these issues may further improve the manuscript.
A) We appreciated these suggestions, and we have now added another column to Table 1 to list the clinical or diagnostic characteristics of each sample. We have also added a passage to our section discussing the replicated findings that addresses the conceptual issues raised by the reviewer (p. 16-17):

“It is notable that for all of our replicated findings, at least some of the samples included individuals qualifying for diagnoses (see Table 1). Relatively few samples excluded individuals with some or all diagnoses, which raises confidence that findings are relevant to clinical phenomena. Additionally, almost no samples were exclusively clinical. Given that features of psychopathology are continuous dimensions, it would be unwise to limit investigations to clinical samples, which restrict the range of the variables under study. On the other hand, it is possible that some associations between psychopathology and neural variables could be nonlinear, changing in or near the clinically relevant range. Nonlinear effects have rarely been investigated, but they could be of interest in future research.”

Reviewer 2

R2.1) The authors rigorously addressed my suggestions with clarifying comments and additional content. I am particularly pleased with their more detailed reporting on the analytic steps used in the reviewed papers, which I believe will serve as helpful context for many readers. Overall, I think this paper will be seen as a useful interim summary of the literature and a point of reference as further research in this domain is carried out. I have no further suggestions.

A) We are glad that the reviewer was happy with our revision, and we are fully in agreement that, if we have succeeded with this project, our paper will serve as “a useful interim summary” as the field continues to expand.

Reviewer 3

R3.1) This is my second review of this paper. Previously, I pointed out the many positive aspects of this informative and well-written paper. I raised only one concern: that a non-quantitative, uncritical, highly selective, and asymmetrical (all positive [yes, there was one negative finding]) was not well suited for the Flagship Journal of Psychopathology. I found the authors' reply somewhat puzzling and slightly dismissive … I never questioned the authors' effort or thoroughness. The citing of effort seems orthogonal to my concern and weak justification for publication.

A) We are sorry that Reviewer 3 was not satisfied with our response and especially that he found it “dismissive.” That was certainly not our intention. Rather, it seems that we may have misunderstood the nature of his concerns about our work. In his current review, he describes his initial review by writing, “I raised only one concern: that a non-quantitative, uncritical, highly selective, and asymmetrical (all positive [yes, there was one negative finding]) was not well suited for the Flagship Journal of Psychopathology.” However, the only issue listed here that we saw raised in the initial review was that it was “uncritical,” and that was not expressed in a
particularly negative way (he wrote, “the paper reads like a well-crafted persuasive argument. And the authors were successful. They convinced me. However, I am not the ideal test case as I favored dimensional systems before reading the paper”). It wasn’t clear from this that he felt persuasiveness to be a bad thing, as opposed to simply feeling unable to judge how effective it would be for a broader audience. The only strong criticism that appeared in his initial review was the following:

“My main and perhaps only concern is that I do not feel the paper is appropriate for a flagship journal. Much of the paper repeats information that is available in other publications. I doubt the Journal's readers need a synopsis of the problems inherent in the DSM system or, for that matter, an outline of the emergence of contemporary quantitative models of psychopathology (the first 3.5 pages of the manuscript). The following 2.5 pages explain the study selection procedures (which are described in more detail in the supplemental material). The review of neural correlates of the HiTOP dimensions is essentially 3 pages long (pages 10 - 13). The last third of the manuscript explains how HiTOP can be integrated into other research frameworks (RDoC, ANA, NIDA & PhAB). Much of which has also been published elsewhere. Likewise, Figures 1 & 4 can be found in multiple publications. Not that the paper isn't informative, it is, but there is not much original in the paper.”

Therefore, we assumed that his primary concern was about originality, and so that is what we addressed in our rebuttal. Our discussion of the amount of labor required for the systematic review did not seem orthogonal to his concern because we were emphasizing that the review was novel and that its value as an original contribution was not necessarily proportional to the number of manuscript pages it occupied. Had he raised criticisms of our work as “non-quantitative,” “highly selective,” and “asymmetrical,” we certainly would have addressed those issues. (In relation to the “asymmetrical” issue, we’re not sure what the reviewer means by saying “there was one negative finding”; in fact, Table 1 identifies 5 failed replications.)

R3.2) To check my perception of suitability, I reviewed the articles published in PCS over the last three years (2021-2023). This covers 24 volumes and 216 papers. Over that period, only two non-quantitative papers were published (outside of special sections). So, I think my perception was at least in the ballpark.

A) We acknowledge in the manuscript that the qualitative nature of our review is a limitation, and we explain why a quantitative review of our topic of interest wasn’t feasible. Nonetheless, we think that there is value for a young and rapidly expanding field (i.e., dimensional clinical neuroscience) in a systematic descriptive review of high quality studies. We are glad that the reviewer agrees with the editors by writing that such a review “might be appropriate for a special section.”

R3.3) The other part of my primary concern was that given the highly selective framework employed (fully transparent and acknowledged) by the authors, the spirit of the paper was more "persuasive" than scientific. I also explored that concern a little more closely. The authors initially identified 4,735 articles, of which only 164 (3.4%) met their inclusion criteria (sample
size and dimensional psychopathology measures). Using these criteria, the universe of papers was reduced to a tiny and likely unique subset of studies. This small subset of studies may have differed from the majority of studies on variables other than those highlighted by the authors. Furthermore, the selection requirements confound two important but quite different variables: sample size and assessment method (dimensional). The importance of sample size for replication is a known problem within neuroimaging research. Given this confound, there is no way of knowing if sample size alone accounts for most of the reported findings.

A) We appreciate the work that the reviewer did to analyze our dataset, but this criticism is a bit confusing. The selection methods do not seem accurately described as “confounds” of each other because we were not testing for the effect of selection method. It seems to make more sense if the criticism is just that our selection method might leave out studies with important evidentiary value. However, because our entire purpose was to review dimensional clinical neuroscience, the many studies that rely only on categorical diagnoses are not relevant. (For reasons explained in the manuscript, it wasn’t feasible in our review to systematically compare effect sizes for dimensional vs. categorical analyses, but we do cite studies that have done so within samples.) And the whole point of our sample-size criterion is that small studies do not provide reliable evidence. Of course, our exact cut-off was somewhat arbitrary, so we’re not saying that no other slightly smaller study could be informative, but we had to draw the line somewhere, and we made a principled decision as to where. Even if the excluded studies did differ systematically from the included studies on variables other than sample size and assessment mode, that would not make them relevant to our research question (which could be summarized as “What has been found in large, dimensional, clinical, neuroimaging studies, and does HiTOP help us organize and interpret it?”). It’s also unclear whether by “most of the reported findings,” the reviewer means all findings reported in the literature (including those we excluded) or only those that we discuss. If it’s in relation to those we discuss, then we can say that adequate sample size is merely a prerequisite for reliably detecting effects, and it cannot “account for” the nature of the specific effects detected.

R3.4) Next, of those 164 qualifying papers, only 39 (23.7%) are cited as replicating (see Table 1). And of those, only 32 non-redundant citations (19.5%). In the end, the argument that HiTOP (and sample size) holds great utility for neuroimaging boils down to 32 (out of 4,735 [or 164]) papers. How much of an improvement, if any, is this over imaging studies employing other assessment methods and sample sizes? There is no way to know from the paper. Put in this light, the value or importance of the outcome is unclear at best and certainly incongruent with the paper's enthusiastic tone. So, I hold to my view that the paper is mainly persuasive.

A) Again we appreciate the thorough analysis of our dataset, but this seems to misunderstand the purpose of our paper. We were not attempting to demonstrate that large sample sizes hold utility for neuroimaging. We take that as a given based on the observed distribution of effect sizes in neuroimaging research and the mathematical facts regarding statistical power. In relation to replication, we did not claim that the number of replicated findings was an index of the value of HiTOP. Rather, the ability of HiTOP to organize and help interpret all 164 qualifying papers is what shows its value. Obviously, we could not thoroughly interpret all of those papers in the space available, so we chose to focus our discussion only on those that had replicated at least once. However, that discussion amounts to a proof of principle, and the same interpretative
approach could be applied to the other papers too. Our work provides guidelines on how to carry out that approach and a well-characterized list of 164 papers to which it can be applied. Thus, our argument that HiTOP holds great utility boils down, not to 32 papers, but to our demonstration that dimensional clinical neuroscience is a rapidly growing field that HiTOP can facilitate. As noted above, other papers we cited have shown directly that the dimensional approach improves effect sizes in neuroimaging relative to categorical, but this was not our purpose here.
The Hierarchical Taxonomy of Psychopathology (HiTOP) and the search for neurobiological substrates of mental illness: A systematic review and roadmap for future research

1University of Minnesota, Psychology Dept., 75 East River Rd., Minneapolis, MN 55455 USA
2University of Michigan, 4250 Plymouth Rd., Rachel Upjohn 2742, Ann Arbor, MI 48109 USA
3Takeda, 350 Massachusetts Ave, Cambridge, MA 02139 USA
4Yale University, Psychiatry Dept., 300 George Street, New Haven, CT 06511 USA
5University of Toronto, Centre for Addiction and Mental Health, 80 Workman Way, Toronto, ON M6J 1H4 Canada
6Stony Brook University, HSC, Level T-10, Room 060H, Stony Brook, NY 11794-8101 USA
7Queen Mary, University of London, G. E. Fogg Building, Mile End Road, London E1 4NS, UK
8University of Utah, Huntsman Mental Health Institute, 501 Chipeta Way, Salt Lake City, UT 84103 USA
9University of Toronto Scarborough, Psychology Dept., 1265 Military Trail, Toronto, ON M1C 1A4 Canada
10Florida State University, Psychology Dept., 1107 West Call Street, Tallahassee, FL 32306 USA
11University of California, Psychology Dept. Irvine, 4102 Soc Beh Sci Gtwy, Irvine, CA 92627 USA
12Georgia State University, Psychology Dept., Urban Life Building 11th Floor, 140 Decatur Street, Atlanta, GA 30303 USA
13University of Pennsylvania, Psychology Dept., 425 S. University Ave., Philadelphia, PA 19104-6018. USA
14University of Maryland, Psychology Dept. and Neuroscience and Cognitive Science (NACS) Program, 4094 Campus Drive, College Park, MD 20742-4411 USA

*Corresponding author: Email: cdeyoung@umn.edu, Fax: +1 (612) 626-2079

WORD COUNT: 7072
Abstract

Understanding the neurobiological mechanisms involved in psychopathology has been hindered by the limitations of categorical nosologies. The Hierarchical Taxonomy of Psychopathology (HiTOP) is an alternative dimensional system for characterizing psychopathology, derived from quantitative studies of covariation among diagnoses and symptoms. HiTOP provides more promising targets for clinical neuroscience than traditional psychiatric diagnoses and can facilitate cumulative integration of existing research. We systematically reviewed 164 human neuroimaging studies with sample sizes of 194 or greater that have investigated dimensions of psychopathology classified within HiTOP. Replicated results were identified for constructs at five different levels of the hierarchy, including the overarching p-factor, the externalizing superspectrum, the thought disorder and internalizing spectra, the distress subfactor, and the depression symptom dimension. Our review highlights the potential of dimensional clinical neuroscience research and the usefulness of HiTOP, while also suggesting limitations of existing work in this relatively young field. We discuss how HiTOP can be integrated synergistically with neuroscience-oriented, transdiagnostic frameworks developed by the National Institutes of Health, including the Research Domain Criteria (RDoC), Addictions Neuroclinical Assessment (ANA), and NIDA Phenotyping Assessment Battery (NIDA PhAB), and how researchers can use HiTOP to accelerate clinical neuroscience research in humans and other species.

Keywords: Hierarchical Taxonomy of Psychopathology (HiTOP), clinical neuroscience, Research Domain Criteria (RDoC), Addictions Neuroclinical Assessment, NIDA Phenotyping Assessment Battery (NIDA PhAB).
General Scientific Summary

Clinical scientists have discovered that mental disorders are not discrete categorical entities, as assumed by traditional diagnostic models, but rather reflect variation on a number of symptom dimensions varying continuously in the general population. In response, clinical neuroscience research has increasingly studied associations of neural variables with dimensional assessments of psychopathology, which can be organized by the Hierarchical Taxonomy of Psychopathology (HiTOP). Using HiTOP as our framework, we review findings from 164 neuroimaging studies with reasonably large samples, highlighting replicated results, and we provide suggestions and guidelines for future HiTOP-informed neuroscience research.
The Hierarchical Taxonomy of Psychopathology (HiTOP) and the search for neurobiological substrates of mental illness: A systematic review and roadmap for future research

Neuroscientific approaches are likely to be important for understanding the etiology of mental illness and for guiding the development of more effective assessments and interventions. Despite massive funding, however, progress in identifying robust neural correlates of psychopathology, to say nothing of biomarkers that might be used in diagnosis, has been slow. This lack of progress in part reflects a heavy reliance on underpowered samples (Button et al., 2013; Marek et al., 2022), but merely collecting larger samples will not, by itself, solve the problem. A growing scientific consensus is that another key impediment is reliance on traditional categorical diagnostic systems, which group heterogeneous patients together and assume that mental disorders are discrete categorical entities (Caspi et al., 2020; Insel et al., 2010; Kotov et al., 2021; Latzman et al., 2020; Redish & Gordon, 2016).

Dimensional approaches to classifying and measuring psychopathology provide an alternative that avoids the most important limitations of categorical nosologies. The corpus of dimensional clinical neuroscience research has grown rapidly, rendering it increasingly difficult to synthesize new findings for cumulative science. This synthesis may be aided by the Hierarchical Taxonomy of Psychopathology (HiTOP), a quantitatively derived, dimensional nosology developed by a grassroots consortium of clinicians and scientists (Kotov et al., 2017, 2021). Here we systematically review 164 studies in human clinical neuroscience that are consistent with the HiTOP approach, highlighting replicated findings. Our results suggest how HiTOP can contribute to future research, complementing several US federal initiatives focused on dimensional constructs, such as the Research Domain Criteria (RDoC; Insel et al., 2010).
HiTOP versus Traditional Psychiatric Nosologies

Official classification systems for mental illness, such as the *Diagnostic and Statistical Manual of Mental Disorders* (DSM; American Psychiatric Association, 2013) and the *International Classification of Diseases* (ICD; World Health Organization, 2018), are rooted in a diagnostic paradigm of categorical disease entities, each with its own set of symptoms, which indicate the presence of that particular illness when sufficient in number and duration. (Throughout, we use “symptoms” broadly to include observable signs as well as subjective experience.) Extensive research on comorbidity and the distributions and covariation of symptoms has revealed that this categorical diagnostic paradigm fails to reflect the reality of mental illness. Indeed, the distribution of psychopathology is dimensional rather than categorical; no common mental disorder has ever been empirically verified as a categorical entity (Haslam et al., 2020), and it is well-established that binary diagnostic categories reduce reliability and validity (and often statistical power) relative to corresponding dimensional assessments of symptom severity (Kotov et al., 2021; Markon et al., 2011; Tiego et al., 2023).

In addition to relying on symptom cut-offs that typically lack empirical justification, current categorical diagnoses also tend to include heterogeneous sets of symptoms, such that patients with the same diagnosis can have very different or even non-overlapping symptom profiles. Further, symptoms often overlap extensively between diagnoses, contributing to high rates of comorbidity (Caspi et al., 2020; Forbes et al., 2023; Kessler et al., 2005). Quantitatively derived, dimensional models of psychopathology offer a promising means to address these limitations, but shifting to a dimensional nosology requires a consensus model that serves research and can also be implemented effectively in clinical settings.
Based on the corpus of quantitative psychopathology research from the last several decades, HiTOP provides a hierarchical, dimensional system that is being developed to encompass the full range of psychiatric clinical conditions (Figure 1, and see https://www.hitop-system.org). (Although HiTOP is not yet fully comprehensive, for example not yet encompassing symptoms of autism or assessments based on cognitive tests, development of the system to include all clinical phenomena is ongoing; Forbes et al., in press.) The most important feature of HiTOP is that the structure of its dimensions and levels is quantitatively derived from empirical data on covariation among symptoms and diagnoses (Kotov et al., 2017, 2021, 2022; Ringwald et al., 2021). The validity of HiTOP has been demonstrated extensively in previous publications (Kotov et al., 2017, 2020, 2021; Krueger et al., 2021; Watson et al., 2022), and it can already be employed effectively in clinical settings (Kotov et al., 2022; Ruggero, 2019).

By arranging clinical phenotypes into transdiagnostic spectra and superspectra, HiTOP accommodates the pervasive comorbidity and low treatment specificity that plague categorical diagnoses, while minimizing heterogeneity by delineating empirically coherent dimensions. HiTOP does not assign people to a single dimension. Rather, every individual is characterized by their profile of scores across all dimensions and may have elevated scores on multiple dimensions. Individuals are characterized simultaneously using the broad spectra and superspectra dimensions and using the narrower dimensions below. Thus, HiTOP’s hierarchical structure enables both lumping and splitting approaches to psychopathology. For example, if someone has a problem involving fear (e.g., phobia), Figure 1 illustrates how HiTOP lumps fear together with other forms of internalizing, thus recognizing important commonalities among all internalizing problems, which may benefit from similar treatment (Barlow et al., 2017). However, it also splits the fear subfactor from the three other subfactors of internalizing (distress,
eating pathology, and sexual problems) to indicate that they are importantly distinct and are likely to have partially distinct etiologies and effective treatments. In other words, any given problem on a lower-level dimension may benefit from multiple interventions, some of which are also effective for other problems in the same spectrum or superspectrum and some of which are specifically effective for that problem.

HiTOP facilitates investigation of neurobiological mechanisms at multiple levels of the hierarchy. Neurobiological variables can be associated either with a broad range of symptoms (correlates of upper-level constructs) or with a narrow range of symptoms (correlates of lower-level constructs). HiTOP thus enables discovery and comparison of transdiagnostic neurobiological systems at different levels breadth, a possibility not readily afforded by research designed around categorical diagnoses (Conway et al., 2019; Zald & Lahey, 2017). In short, HiTOP dimensions provide targets that should be more useful for clinical neuroscience than binary diagnostic categories comprising heterogeneous symptoms.

Some of the best evidence for this assertion comes from studies that compare effect sizes for dimensional assessments and binary diagnoses. Because there is so much variation in methods in neuroimaging research, even for very similar research questions, comparing effect sizes from different studies is often uninformative. Further, many neuroimaging studies do not report effect sizes at all, relying on brain maps of significance to convey their findings, and often there is no easy way to compute effect sizes from what is reported. Thus, the crucial studies for comparing effect sizes for different measures of psychopathology are head-to-head comparisons in the same sample. At least three such studies have found that neural variables are more strongly associated with dimensions of psychopathology than with diagnoses, when both are assessed in the same samples (Kircanski et al., 2018; Martin et al., 2021; Reininghaus et al., 2019).
Neural Correlates of HiTOP Dimensions

Many neuroimaging studies have reported associations of brain structure and function with dimensions of psychopathology relevant to HiTOP. HiTOP provides a framework in which to locate dimensional psychopathology constructs, and existing assessments can be classified within HiTOP if they use psychometrically sound measures of dimensions represented in HiTOP or if they are latent variables that model those dimensions as shared variance across multiple symptoms or diagnoses. Taking advantage of this integrative potential for HiTOP, we conducted a systematic, qualitative review of reasonably large studies in various neuroimaging modalities (e.g., magnetic resonance imaging, MRI; electroencephalography, EEG), spanning multiple levels of the HiTOP model. The goal of this review was to summarize the current state of the relatively young field of dimensional approaches to clinical neuroimaging, identifying the scope of research already conducted in this area, assessing the degree to which studies have converged on replicated findings, and providing a list of individual findings that might warrant replication attempts. This review was not intended to answer a specific empirical question or to provide an assessment of effect sizes. It was not preregistered, and we did not adopt every guideline from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) system, but our goal was to provide a thorough and unbiased overview of the field.

Our procedure for conducting the review is summarized here, and full details may be found in our supplemental material. We searched PubMed for the conjunction of three lists of terms: (1) terms describing neuroimaging methods; (2) terms referring broadly to mental illness, psychopathology, and psychiatry; (3) specific constructs, frameworks, and statistical approaches of interest. Subsequently, we canvased members of the HiTOP Neurobiological Foundations workgroup to identify missing studies. Criteria for study eligibility included use of dimensional
assessments or latent variable models of psychopathology, as well as a minimum sample size of 194 participants, the number necessary for 80% power to detect a product-moment correlation of .20 at $p < .05$. This effect size was chosen because it is approximately the median reported effect size in meta-analyses of psychological research on individual differences and is conventionally considered small-to-moderate (Gignac & Szodorai, 2016; Hemphill, 2003). Smaller samples are unable to estimate such effects accurately, due to sampling variability (Schönbrodt & Perugini, 2013), and one unfortunate consequence of this lack of precision is that a larger proportion of significant findings are false positives when studies are underpowered. This problem is further exacerbated when many statistical test are conducted, as in many neuroimaging studies.

Recent research on individual differences in neuroimaging data indicates that univariate associations of symptom dimensions with neural correlates in structural MRI and resting state functional connectivity data are typically likely to be even smaller than $r = .20$ (Marek et al., 2022). This finding suggests a cut-off even larger than 194, but we felt it was important to capture a reasonably comprehensive cross-section of existing research. Thus, our sample-size criterion is a compromise between maintaining adequate statistical power for trustworthy results and acknowledging the general tendency of the field to conduct underpowered studies.

We required that samples were from either the general population (whether or not the sample was enriched for one or more diagnoses or for high scores on some dimension of psychopathology) or a mixed-diagnosis population containing patients selected on at least two diagnoses falling in at least two different HiTOP spectra (to reduce problems related to restriction of range in single-diagnosis samples). Case-control designs were excluded.

After 4,735 initial hits, 151 studies were retained following exclusions based on sample, assessment, and analytic criteria, and 13 other studies meeting our criteria were added after being
identified by HiTOP members (Figure 2). Characteristics and results for all 164 studies are tabulated in supplemental material. Retained studies covered all six HiTOP spectra, some at the spectrum level and some assessing lower-level constructs within those spectra (Figure 3).

Additionally, 35 studies focused on the p-factor (which represents the shared variance among all more specific forms of psychopathology), either by itself or in conjunction with lower-level constructs. Regarding methods, 128 studies used one or more forms of MRI. The most frequent MRI modalities were structural MRI (57 studies), resting-state functional connectivity (51 studies), task-based functional MRI (25 studies), and diffusion-weighted imaging of white matter (22 studies). Thirty-five studies used EEG data.

Given the broad scope of our review, we focus our discussion on replicated results (Table 1), here defined as those that were significant, in the same direction, for the same HiTOP construct, in two or more independent samples, using the same neuroimaging modality with similar methods (thus, for example, a task-based fMRI result would not be considered to replicate a resting-state fMRI result, even if they implicated the same brain region). HiTOP constructs could be measured by different assessment methods, as long as they were identifiable as the same construct. Our goal with this relatively permissive set of criteria for replication was not to determine whether replicated findings were robust or to provide effect-size estimates. Instead, our summary of replicated results is intended to highlight some findings that may be especially worth following up in future research. We also note when any additional studies failed to replicate the replicated results using similar methods. The summary is organized in terms of superspectra and spectra, with narrower dimensions discussed with the relevant spectrum.

[Insert Table 1 about here.]
P-Factor Superspectrum

Replicated structural findings for the p-factor indicate that it is negatively associated with various MRI measures of global brain size, including intracranial volume (ICV) but also gray matter volume (GMV), mean cortical thickness, and cortical surface area (Durham et al., 2021; Kaczkurkin et al., 2019; Lees et al., 2020; Roalf et al., 2017; Romer et al., 2021). We group these results together because GMV is a substantial component of ICV and a function of cortical thickness and surface area. These results are consistent with a recent genome-wide association study of shared risk across diagnoses, which pinpointed four common genetic variants believed to play a role in fetal cortical development (Schork et al., 2019). One possibility is that underdeveloped cortical size is associated with general risk for psychopathology because it reflects some very general properties of brain function. Another possibility is that smaller size in some specific large-scale brain networks (a likely consequence of reduced overall cortical size) is associated with poorer function that creates broad risk. The latter possibility is consistent with two other replicated findings: first, that the p-factor is associated with reduced functional segregation of the control or executive network from other major brain networks, as indicated by greater synchrony of this network with other networks (Chen et al., 2022; Elliott et al., 2018; Lees et al., 2021; Sripada et al., 2021; Xia et al., 2018); and, second, that the p-factor is associated with reduced functional connectivity within a network often labeled the “default network” (Chen et al., 2022; Karcher et al., 2021; Sripada et al., 2021), which is involved in memory, prospection, imagination, self-evaluation, and perspective taking (Andrews-Hanna et al., 2014). (Note that the default network finding counts as replicated, by our criteria, because one study split the ABCD sample in half and found the effect independently in each subsample of $n > 3700$.)
Externalizing Superspectrum

The externalizing superspectrum encompasses the shared variance of antagonistic externalizing (aggression, callousness, deceitfulness, etc.) and disinhibited externalizing (impulsivity, distractibility, drug problems, etc.), and it has often been studied without separating its two subspectra. In seven studies, this broad externalizing factor, as well as many of its subdimensions, were associated with reduced amplitude of the P300 event-related potential (ERP) in EEG, an electrophysiological index of attentional control (Bowyer et al., 2020; Costa et al., 2000; Gilmore et al., 2010a, 2010b; Habeych et al., 2005; Koskinen et al., 2011; Mobascher et al., 2010). (One additional study did not replicate the result; Ait Oumeziane & Foti, 2016.) This extensively replicated finding is consistent with the premise that both disinhibited and antagonistic behavior often result from a lack of top-down control, which allows disruptive impulses to be enacted in behavior (Venables et al., 2018).

Internalizing Spectrum

The internalizing spectrum was found to be positively associated total amygdala volume in three studies (Albaugh et al., 2017; Holmes et al., 2012; Lahey et al., 2021). Although two other studies failed to replicate this association (Durham et al., 2021; Hyatt et al., 2019), it is congruent with a large body of evidence linking internalizing to the extended amygdala (Hur et al., 2019). The internalizing spectrum as a whole may reflect variation in mechanisms involved in defensive emotional and motivational responses to aversive stimuli, with its various subdimensions reflecting different aspects of that multifaceted response. Other replicated findings emerged for specific subdimensions of internalizing. Distress, a subfactor that encompasses many symptoms related to anxiety and depression, was associated negatively with volume of the rostral anterior cingulate cortex (ACC; Cohen et al., 2006; Hayakawa et al., 2014;
Zhu et al., 2021). Other studies found that the narrower depression symptom dimension was negatively associated with the reward positivity, an ERP index of reward sensitivity. Two studies found the association with the reward positivity (Nelson et al., 2016; Nelson & Jarcho, 2021), but two others did not (Ait Oumeziane & Foti, 2016; Kessel et al., 2016). A fifth study suggests a possible reason for these inconsistencies (Goldstein et al., 2020). In a sample of children, the reward positivity was negatively associated with depression symptoms, but only for those who had experienced higher levels of stressful life events. If this finding generalizes to other populations, it would suggest that sensitivity of the reward system may be a risk factor for depression, rather than a direct marker of it.

Thought Disorder Spectrum

Three replicated functional connectivity findings were identified for the thought disorder spectrum, which reflects psychotic symptoms and cognitive disorganization. First, two studies found a negative association with connectivity in the frontoparietal control network, an extensive brain network implicated in working memory and attention control (Baker et al., 2019; Blain et al., 2020). This is consistent with the general disorganization of thought and behavior seen in psychosis (Kotov et al., 2020). The second and third findings are more complicated because they seem to contradict each other. Two studies (one of which reported replication across two samples) found a positive association between thought disorder and connectivity within the default network (Blain et al., 2020; Xia et al., 2018), whereas two other studies found a negative association (Baker et al., 2019; Meda et al., 2014). Although it is possible that these contradictory results are due to differences in methodology, such as use of different covariates and different measures of psychopathology, the most notable difference between the studies is in their samples: those that found a positive association used general population samples, whereas
those that found a negative association used samples with a large proportion of patients. Differences in the frequency of severe mental illness in the samples might lead to these very different associations between symptom severity and brain function. These conflicting results highlight an important puzzle for future research on psychosis.

Lessons and Limitations

The replicated findings cut across traditional categorical diagnostic categories. HiTOP provides a framework for investigating such cross-cutting neural correlates of psychopathology at varying levels of breadth, ranging from those that are evident across most forms of illness (p-factor), to those that are linked to more specific forms of illness (e.g., spectra), to those that are only evident for narrow symptom dimensions. One challenge for such research, evident in the studies we identified, is the great variety and often *ad hoc* nature of the dimensions and models employed, based on measures that happen to be available in each sample. Nonetheless, we were able to map these dimensions onto HiTOP constructs, illustrating how HiTOP provides a common language for dimensional research. In the future, researchers are advised to select measures allowing thorough assessment of HiTOP dimensions, but researchers can already use HiTOP to identify which dimensions can be adequately assessed in existing datasets, thereby allowing more effective cumulative scientific progress (e.g., see list of HiTOP-conformant measures in Table 1 of Kotov et al., 2017). For instruments that have not previously been classified, we recommend searching the empirical literature for patterns of association with HiTOP dimensions or, if that such evidence is not available, then careful examination of item content to determine probable correspondence. The recently released HiTOP survey instrument (https://www.3plab.org/hitop) should be useful in such content analysis.
If researchers use confirmatory or exploratory factor analysis to assess dimensions of psychopathology, then one important consideration is whether associations with neural variables are tested in latent space. Of the studies we reviewed, only 14 (9%) examined associations between psychopathology and neural variables in latent space (and 7 others used canonical correlation analysis, which is analogous but not, strictly speaking, latent). Forty studies (24%) used estimated factor scores for psychopathology dimensions. Estimating factor scores moves the dimension out of latent space back to observed measurement space, and this reintroduces error variance that was removed in latent space, reducing power and accuracy and also often inflating correlations among dimensions (even if they were orthogonal in latent space). The remaining 63% of studies used observed scale scores or composites of observed scale scores. There are compelling reasons to conduct analyses of brain-behavior associations in latent space, but methodological constraints sometimes render this difficult (Tiego et al., 2023).

Another crucial issue to consider when interpreting the findings we reviewed (or when planning future research) is discriminant validity. At every level of HiTOP’s hierarchy below the p-factor, there are expected correlations between dimensions (represented by their grouping within higher-level dimensions). Thus, whenever researchers detect an association of some neurobiological variable with a HiTOP construct, it is important to consider (1) whether the association is unique to that construct or shared with other constructs at the same level, and (2) whether the association might be due to only a subset of the dimensions nested beneath the construct in question. These questions cannot be answered unless multiple dimensions are examined, even if the study’s focal hypothesis is about only one. Further, if multiple constructs at the same level are associated with the neurobiological variable of interest, then it becomes important to control for their shared variance to determine whether the effect is specific to one of
them. Only 36% of the studies in our review adequately controlled for multiple dimensions of psychopathology (as indicated in our supplemental spreadsheet). For all those that did not, the failure to investigate discriminant validity limits the conclusions we can draw from them.

One limitation of our review is that it was not quantitative, but the diversity of research questions and methods, the relatively modest number of published studies for most constructs, and the frequent failure of neuroimaging studies to report interpretable effect sizes made meta-analysis impractical. Another limitation, which could have contributed to some of the replication failures noted above, is that the retained studies used samples of widely varying ages, including children, adolescents, and adults. Neural substrates of psychopathology may shift with age, but the relevant literature is not yet sufficiently developed to consider moderation by age in a review of this scope. The results reported here are clearly not the whole story regarding neural correlates of any HiTOP dimension. Given the complexity of the brain, each dimension of psychopathology will almost certainly be influenced by multiple neural parameters, and many other correlates therefore remain to be found. Additionally, some findings reported here could be false positives despite replication. Going forward, additional replications in adequately powered samples (ideally preregistered) are crucial, and we hope researchers find our supplemental spreadsheet useful for identifying other findings that are worthy of replication attempts.

Considering the dates of all included studies (see supplemental material), our review shows that large studies of dimensional clinical phenotypes have recently become much more prevalent, a hopeful development for the field. At the same time, many studies have relied on a relatively small set of large samples, such as ABCD, and this is certainly a limitation that the field should attempt to overcome by collecting additional, diverse, large samples. It is notable that for all of our replicated findings, at least some of the samples included individuals qualifying
for diagnoses (see Table 1). Relatively few samples excluded individuals with some or all diagnoses, which raises confidence that findings are relevant to clinical phenomena. Additionally, almost no samples were exclusively clinical. Given that features of psychopathology are continuous dimensions, it would be unwise to limit investigations to clinical samples, which restrict the range of the variables under study. On the other hand, it is possible that some associations between psychopathology and neural variables could be nonlinear, changing in or near the clinically relevant range. Nonlinear effects have rarely been investigated, but they could be of interest in future research.

Identification of relatively broad structural and functional neural correlates, such as those covered in our review, increases knowledge about psychopathology. However, it is not yet certain how useful this approach may be in diagnosis or the development of interventions. One possibility for the future is that, as knowledge of neural correlates becomes more detailed, they could provide incremental information in diagnosis. More immediately, however, they seem likely to be useful in basic research aimed at understanding the etiology of various forms of psychopathology, such as by identifying which neural circuits to prioritize in mechanistic follow-up research in humans or other species. (One example of such synergistic research is discussed in relation to anxiety in our later section “Connecting HiTOP to Research in Other Species.”) In the next section, we discuss using frameworks developed for neuroscientific approaches to interpret results from our review.

Integrating HiTOP with Frameworks from the National Institutes of Health (NIH)

HiTOP is not the only dimensional framework that has been proposed in response to the shortcomings of categorical diagnoses. Three NIH institutes have developed frameworks to guide research on mental disorders: RDoC, created by the National Institute of Mental Health
RDoC is designed to be a flexible framework that can change over time in response to scientific developments. Currently, it lists six domains of biobehavioral systems (see Figure 4), each subsuming multiple constructs and subconstructs, to be studied across multiple units of analysis ranging from genes to neural circuits to self-reports, as outlined in the RDoC matrix (https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/constructs/rdoc-matrix.shtml). ANA includes three domains relevant to addiction—negative emotionality, incentive salience, and executive function—and NIDA PhAB includes the same three domains and adds interoception, metacognition, and sleep. RDoC, ANA, and NIDA PhAB were designed to capture specific behaviors, neural circuits, and mechanisms relevant to psychopathology. Unlike diagnostic systems, they do not aim to provide comprehensive coverage of psychopathology in terms of its clinical presentation. Indeed, many clinically important problems (such as narcissism, drunk driving, and suicide attempts) are outside the scope of these frameworks. The authors of RDoC were explicit that RDoC was not designed to replace current diagnostic systems or to be adopted in clinical practice (though it is certainly intended to produce discoveries that can inform advances in diagnosis and treatment) (Kozak & Cuthbert, 2016). Further, the three frameworks include a number of legacy self-report measures that have suboptimal specificity, reliability, and validity (National Advisory Mental Health Council, 2016; Watson et al., 2017).
In contrast, HiTOP is designed to provide a comprehensive catalogue of dimensions characterizing clinical manifestations of psychopathology and is ready for immediate clinical and research applications (Kotov et al., 2021, 2022; Ruggero et al., 2019). HiTOP can be operationalized with existing validated measures, including self-reports, informant-reports, and interviews (and we encourage researchers to rely on multiple modalities when possible, given the biases inherent in single-informant ratings). Additionally, the consortium is developing new instruments tailored to the system that will be reliable, validated, and normed in the general population to allow interpretation of scores for individual patients (Kotov et al., 2022).

Importantly, however, HiTOP is a descriptive system that classifies clinical phenomena without specifying their etiology or mechanisms. Hence, HiTOP complements RDoC, ANA, and NIDA PhAB in description and measurement of behavior but does not replace them.

HiTOP can also facilitate clinical application of the NIH frameworks by providing a crosswalk between NIH constructs grounded in neuroscience and clinical presentations. Though it does not specify etiology or mechanisms itself, HiTOP can aid NIH frameworks by providing dimensions that are valid, empirically coherent, and psychometrically robust clinical targets for genomic and neuroimaging studies (Latzman et al., 2020; Waszczuk et al., 2020). Reciprocally, research drawing on NIH frameworks can help validate HiTOP dimensions and explicate their biological underpinnings. Jointly, HiTOP and neuroscience-based frameworks may have the potential eventually to produce a unified nosology that rigorously characterizes both behavioral manifestations of psychopathology and their etiology.

Some linkages between HiTOP and NIH frameworks can already be identified. A recent comprehensive literature review examined empirical studies that correlated markers of the six RDoC domains and six HiTOP spectra, as well as more specific subdimensions within them
HiTOP Neurobiology Review 20

(Michelini et al., 2021). The review identified many links between RDoC constructs or subconstructs and HiTOP dimensions, each supported by multiple studies. At the levels of RDoC domains and HiTOP spectra, several associations were particularly prominent in their effect size and consistency. These top links are shown in Figure 4.

Provisional connections of HiTOP with ANA and NIDA PhAB can be drawn based on the substantial overlap of their domains with RDoC, as indicated in Figure 4. Consequently, HiTOP constructs that are correlates of negative valence should also be correlates of negative emotionality; similarly, incentive salience should parallel positive valence, executive functions should parallel cognitive systems, and sleep should parallel the arousal/regulatory domain. Linking NIDA PhAB’s interoception and metacognition domains to HiTOP requires additional investigation, but metacognition has apparent conceptual links to antagonistic externalizing (Watts et al., 2023).

Although the links in Figure 4 are not all one-to-one pairings, some specificity is apparent, as each NIH domain shows prominent associations with one to three HiTOP spectra. Links between more specific RDoC constructs and HiTOP dimensions are more complex, however. For example, although a connection between RDoC’s positive valence and HiTOP’s internalizing dimension is not apparent at the level of organization depicted in Figure 4, RDoC’s initial response to reward construct (within positive valence) is negatively associated with HiTOP’s distress subfactor (within internalizing). This pattern underscores the hierarchical nature of HiTOP and RDoC constructs. General levels offer a more parsimonious description, whereas more specific levels contribute additional valuable information and nuance. This flexibility allows studies to focus on the level most suitable to their goals (e.g., investigating neurocircuitry common to all internalizing disorders versus neurocircuitry specific to anhedonia).
In future research, studies using the NIH frameworks can include HiTOP-consistent assessments in order to elucidate the etiology and mechanisms of clinical phenomena and to identify and control for relevant patterns of comorbidity (Latzman et al., 2020).

The identified links between HiTOP and the NIH frameworks can be used to guide future research in clinical neuroscience or interpretation of existing research. For example, RDoC constructs can be used to deepen the interpretation of neuroscientific results for HiTOP dimensions, as we now illustrate using some of the results of our systematic review. Internalizing is primarily linked to Negative Valence, and the RDoC matrix shows that all but one construct within Negative Valence has been linked to extended amygdala function. This provides context in which to consider the mixed results for associations between internalizing and amygdala volume in our review (three significant findings and two failures to replicate). The RDoC matrix links the P300 waveform, consistently found to be negatively correlated with externalizing, with the construct Attention in the Cognitive domain, consistent with interpretations of this association as indicative of poor attentional control and with the link in Figure 4 between the Cognitive domain and disinhibited externalizing.

At levels of HiTOP below the spectra, links to RDoC can also be informative. Our review suggests that distress is associated with reduced volume of the rostral ACC. RDoC links rostral ACC to Fear (Acute Threat), whereas fear in HiTOP is a separate subfactor of internalizing, distinct from distress. However, RDoC links “dysregulation of cingulate reactivity” to Sustained Threat, which is a better match for distress. This contrast suggests an avenue for future research, probing more precisely what region of rostral ACC and what aspects of its function are linked to distress, not to mention whether the fear subfactor might also be related to parameters of rostral ACC.
We found mixed results for a negative association of depression with amplitude of the reward positivity, and here too RDoC is relevant, linking the reward positivity (though under its other name, the feedback related negativity) to Reward Learning. Michelini et al. (2021) identified links of Reward Learning not only to harmful substance use but also to distress, the larger dimension of which depression is a symptom component. This suggests the potential utility of investigating other symptom components of distress for associations with the reward positivity. On the whole, these comparisons indicate that RDoC can be useful in dialogue with HiTOP-focused neuroimaging, sometimes providing evidence about the plausibility and meaning of findings and sometimes calling results into question and suggesting additional avenues of research to explore.

Using HiTOP in Clinical Neuroscience Research

Figure 5 illustrates the basic approach to using HiTOP in human clinical neuroscience research. Clinical phenotypes of interest are dimensions of psychopathology rather than categorical diagnoses. In place of case-control designs, participants are sampled from the general or treatment-seeking population to capture a range of variance in the dimensions of interest. Although sampling based on diagnostic categories is not recommended, oversampling individuals who fall at the high end of the dimension in question can be useful. In intervention research where treatment for a particular form of psychopathology is of interest, the aim would be to recruit participants with sufficient elevation on the corresponding HiTOP dimension (e.g., at least 1.5 standard deviations above the norm) to achieve measurable therapeutic benefit if the treatment is efficacious.

Case-control designs often create insurmountable confounds because healthy controls are likely to differ from cases in many ways beside the focal diagnosis, such as in socioeconomic
status (SES). Further, when people with the focal diagnosis are excluded for having comorbid diagnoses, the resulting case group is unlikely to be representative of the diagnostic category. In HiTOP-oriented research, researchers can use assessment of other HiTOP dimensions to control and investigate comorbidity statistically, and they can also employ statistical control of potential confounds like SES (Tiego et al., 2023).

Widespread adoption of similar dimensional constructs and measures within clinical neuroscience would facilitate cumulative progress and pooling of data across research groups to enable well-powered investigation of complex datasets (Holmes et al., 2018; Shackman & Fox, 2018). Furthermore, this principle applies not only to the measurement of clinical phenomena organized by HiTOP but also to measurement of the brain. Analogous to the development of HiTOP as a consensus taxonomy of psychopathology is the movement toward consensus taxonomies of macro-scale functional networks in the brain (Uddin et al., 2019, 2023). Neural variables that characterize these networks, their subnetworks, and the interactions among them are likely to be crucial for understanding psychopathology (van den Heuvel & Sporns, 2019). Harmonizing measures of both neural networks and HiTOP dimensions across research groups will allow for more effective mapping of HiTOP constructs to their neurobiological substrates.

When investigating HiTOP dimensions, researchers should keep in mind that various modeling strategies can be used to produce latent psychopathology variables, and choice of model may influence results. Many studies involving the p-factor have used confirmatory bifactor models, but evidence is accumulating that such models are suboptimal, especially for studies that attempt to investigate specific, lower-level factors in addition to the p-factor (Forbes et al., 2021; Watts et al., 2020). Although the depiction of HiTOP in Figure 1 resembles a higher-order factor model, the figure need not be translated directly to any particular statistical model,
and HiTOP does not dictate the choice of such models. Researchers may reasonably use various methods, including bifactor models fit with exploratory structural equation modeling, higher-order models, or correlated-factor models. Researchers should keep in mind that when latent variable models are used to create estimated factor scores, those scores are often correlated with each other even when the factors in the latent model were uncorrelated. Correlated factor scores make it important to use other factors as covariates when attempting to ascertain factor-specific associations with neural variables.

One limitation of HiTOP is that it does not currently incorporate the development and change of features of psychopathology into its descriptive system. Nonetheless, it provides a useful framework of variables for studying change. To advance understanding of the etiology of HiTOP constructs, use of research designs that facilitate causal inference will be crucial. Merely identifying neural correlates of HiTOP dimensions does not reveal whether those correlates are causes or consequences of dysfunction in the dimensions of interest, and causal processes are probably bidirectional (Perkins et al., 2022). For example, some longitudinal studies find that scores on dimensions of psychopathology predict later change in brain structure (Muetzel et al., 2018), whereas others find that patterns of neural variables predict later change in dimensions of psychopathology (Castellanos-Ryan et al., 2014). Longitudinal studies, genetically informative designs, and interventions targeting neural functioning using pharmacology, neurostimulation, or psychotherapy are needed to elucidate these causal relationships. Additionally, the computational-psychiatry and machine-learning approaches that are beginning to transform clinical neuroscience (Huys et al., 2016, Redish & Gordon, 2016) can also aid in identifying causal mechanisms and will benefit from the assessments that HiTOP can provide as clinical targets.
Connecting HiTOP to Research in Other Species

Thus far, we have focused on research on humans, but much clinical neuroscience is conducted using animal models, and such research can be pivotal in moving from correlational studies, like those we reviewed here, to studies of causal mechanism that are crucial for developing novel treatments. In animal models, recent methodological advances, such as optogenetics and single-cell RNA sequencing, make it possible to manipulate and measure the brain with unprecedented precision, creating vital opportunities for pinpointing the neural mechanisms—from molecules to macrocircuits—that underlie psychopathology. However, progress is impeded by the poor alignment between animal models and official diagnostic categories (Hyman, 2007). Most animal studies are models of specific symptoms, (e.g., anhedonia), rather than of a diagnostic syndrome (e.g., Major Depressive Disorder). Recognizing this disconnect, NIMH, NIAAA, and NIDA have increasingly organized their research portfolios around dimensional frameworks—RDoC, ANA, and NIDA PhAB—that encompass biologically tractable, transdiagnostic symptom dimensions. Additionally, we hope that the trend toward dimensional frameworks encourages researchers who study other species to pay attention to individual differences in their subjects.

HiTOP can complement these frameworks in research that involves animal models, just as it does in human neuroscience, by providing the link between laboratory discoveries and features of patients’ clinical presentation. Correspondences between HiTOP dimensions and dimensions from the NIH frameworks (Michelini et al., 2021) enable improved mapping of findings in other species to human symptoms. For example, researchers studying constructs and neural circuits described by RDoC can use HiTOP to link their results to human symptoms that are likely to be relevant. Unlike categorical diagnoses, HiTOP creates a natural framework for
linking mechanistic insights to psychopathology, and clinical neuroscientists should consider HiTOP dimensions as potential targets for animal models, to link preclinical and clinical work more tightly. (Note that we were not suggesting that a hierarchical taxonomy of behavioral dimensions should be designed for other species. Rather, we are suggesting that the symptom dimensions identified by HiTOP are often easier to translate to dimensions of animal behavior than are traditional diagnostic categories.)

Research on anxiety, a symptom dimension core to internalizing, illustrates the utility of HiTOP-concordant phenotypes in animal research. Pathological anxiety is both prevalent and debilitating, but existing treatments are ineffective for many people, and side effects can be debilitating. Hence, developing a clearer understanding of the neural systems governing anxiety is urgent, and controlled manipulations of neural function enabled by animal models are essential for pinpointing the mechanisms that are necessary and sufficient for orchestrating specific manifestations of anxiety (e.g., behavioral inhibition). Work in nonhuman primates has proven especially valuable for identifying the specific neural mechanisms underlying persistent individual differences in anxious temperament. Using a combination of large multi-generational samples, multimodal neuroimaging, molecular genetics, and targeted perturbation studies, this research has (1) identified a distributed cortico-subcortical network (involving the extended amygdala, anterior hippocampus, orbitofrontal cortex, anterior insula, and periaqueductal gray) associated with stable individual differences in anxious temperament, (2) discovered candidate molecular pathways, and (3) determined the heritability and causal contributions of specific regional and molecular components (Fox et al., 2015; Fox & Shackman, 2019; Kenwood & Kalin, 2020). HiTOP provides a map of the features of psychopathology to which this research on anxiety is most likely to be relevant, suggesting that anxious temperament contributes to
symptoms encompassed by the internalizing spectrum, such as social anxiety, separation insecurity, phobias, and features of generalized anxiety (Kotov et al., 2017; Watson et al., 2022).

HiTOP can also help to lay the groundwork for reorganizing therapeutics development and regulation around transdiagnostic psychiatric symptoms. Translational research on anhedonia—a loss of sensitivity to rewards often associated with depression—provides an excellent example. Rodent research has identified the κ-opioid receptor as a target for altering behaviors associated with deficits in reward processing (Pizzagalli et al., 2020). An 8-week, double-blind, placebo-controlled, randomized trial of a κ-opioid antagonist showed effectiveness in increasing reward processing, in human patients selected using a dimensional measure of anhedonia (Krystal et al., 2020; Pizzagalli et al., 2020). HiTOP’s placement of anhedonia indicates that this research is likely to be relevant to features of psychopathology associated with the detachment and internalizing spectra (Kotov et al., 2017, 2020; Watson et al., 2022).

Typical translational research in animal models pairs a manipulation with some specific behavioral outcome. The behaviors are almost always transdiagnostic, which is in keeping with HiTOP, and they are usually narrow, corresponding to constructs from lower levels of HiTOP (e.g., anxiety and anhedonia). However, the manipulations (e.g., stress or gene knock-outs) often affect a range of behaviors, and so they may be interpretable in the context of higher-level HiTOP constructs, such as spectra, that encompass a range of symptoms. HiTOP thus provides a potentially powerful organizing framework for research linking animal models to the clinical manifestations of human psychopathology at multiple levels of generality. By encouraging the use of psychometrically sound, dimensional constructs and locating them in relation to other features of psychopathology, HiTOP may accelerate the development of effective biological interventions.
Conclusion

Lacking a quantitative and validated guiding nosological model, progress in clinical neuroscience has been difficult. Neuroscientific evidence increasingly shows that many of the biological correlates of mental illness are transdiagnostic, corresponding to symptom dimensions cutting across traditional diagnoses. Prior to the development of HiTOP, however, there was no system capable of organizing the full range of dimensional, clinical phenotypes. Our review of 164 neuroimaging studies not only identifies some promising replicated findings but also illustrates how HiTOP provides a framework for linking clinical phenotypes with measures of neurobiological systems. HiTOP allows integration of a comprehensive clinical description with the various biobehavioral constructs targeted by clinical neuroscientists and NIH initiatives. We predict HiTOP will play an important role in the discovery of the neurobiological mechanisms underlying different forms of psychopathology.
Acknowledgments

Competing Interests Statement

Dr. Latzman is currently employed by Takeda Pharmaceuticals. No other authors report any biomedical financial interests or potential conflicts of interest.
References

for anxiety disorders: A randomized clinical trial. JAMA psychiatry. 2017 Sep 1;74(9):875-84.

https://doi.org/10.1017/s0033291723002544

Hyman SE. Can neuroscience be integrated into the DSM-V?. Nature Reviews Neuroscience. 2007 Sep;8(9):725-32.

Kenwood MM, Kalin NH. Nonhuman primate models to explore mechanisms underlying early-life temperamental anxiety. Biological psychiatry. 2020 Sep 12.

Ruggero CJ, Kotov R, Hopwood CJ, First M, Clark LA, Skodol AE, Mullins-Sweatt SN, Patrick CJ, Bach B, Cicero DC, Docherty A. Integrating the Hierarchical Taxonomy of

Table 1. Summary of replicated findings (at least two consistent findings in independent samples).

<table>
<thead>
<tr>
<th>Finding</th>
<th>Citation</th>
<th>Sample</th>
<th>Clinical/Diagnostic Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-factor negatively associated with intracranial volume, gray matter volume, total cortical surface area, or mean cortical thickness.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romer et al. (2021)</td>
<td>861 participants from the Dunedin study. (Age 45)</td>
<td>General population. (Used diagnostic interviews. Diagnostic status of cohort members is documented by Caspi et al., 2020.)</td>
<td></td>
</tr>
<tr>
<td>Roalf et al. (2017)</td>
<td>1266 participants from PNC. (Age 8-21, mean = 15.2, SD = 3.5)</td>
<td>359 no diagnosis, 386 psychosis spectrum, 521 other psychopathology. (Used computerized diagnostic interviews.)</td>
<td></td>
</tr>
<tr>
<td>Kaczkurkin et al. (2019)</td>
<td>1394 participants from PNC. (Age: M = 15.0, SD = 3.6)</td>
<td>428 no diagnosis, 230 ADHD, 81 agoraphobia, 16 anorexia, 5 bulimia, 121 conduct disorder, 27 generalized anxiety, 193 major depression, 16 mania, 43 obsessive compulsive, 458 oppositional defiant, 14 panic, 399 psychosis spectrum, 172 posttraumatic stress, 63 separation anxiety, 328 social anxiety, 426 specific phobia. (Used computerized diagnostic interviews.)</td>
<td></td>
</tr>
<tr>
<td>Lees et al. (2020)</td>
<td>9719 participants from ABCD. (Age 9-10, M = 9.9, SD = 0.6)</td>
<td>264 depression, 409 generalized anxiety, 27 panic, 834 separation anxiety, 453 social anxiety, 46 hallucinations, 163 delusions, 1870 ADHD, 1283 oppositional defiant, 271 conduct disorder, 844 obsessive compulsive, 324 bipolar, 170 posttraumatic stress, 2511 specific phobia. (Used diagnostic interviews.)</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Sample Size & Age Range</td>
<td>Participants</td>
<td>Diagnostic Characteristics</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Cheng et al. (2021)</td>
<td>11067 participants from ABCD. (Age 9-11, (M = 9.9), SD = 0.6)</td>
<td>Diagnostic characteristics not documented. (Likely consistent with other ABCD studies. Used diagnostic interviews.)</td>
<td></td>
</tr>
<tr>
<td>Mewton et al. (2021)</td>
<td>11875 participants from ABCD. (Age 9-10, (M = 9.9), SD = 0.6)</td>
<td>318 depression, 510 generalized anxiety, 32 panic, 1049 separation anxiety, 547 social anxiety, 55 hallucinations, 216 delusions, 2429 ADHD, 1667 oppositional defiant, 374 conduct disorder, 1099 obsessive compulsive, 429 bipolar, 231 posttraumatic stress, 3133 specific phobia. (Used diagnostic interviews.)</td>
<td></td>
</tr>
<tr>
<td>Durham et al. (2021)</td>
<td>9607 participants from ABCD. (Age 9-10, (M = 9.9), SD = 0.6)</td>
<td>Diagnostic characteristics not documented. (Likely consistent with other ABCD studies.)</td>
<td></td>
</tr>
<tr>
<td>Elliott et al. (2018)</td>
<td>605 participants from the Duke Neurogenetics Study. (Age 18-22, (M = 20.2), SD = 1.2)</td>
<td>472 no diagnosis, 76 alcohol use, 24 substance use, 33 depression, 26 bipolar, 7 panic, 9 agoraphobia, 4 social anxiety, 8 generalized anxiety, 10 obsessive compulsive, 7 eating disorders. (Used diagnostic interviews.)</td>
<td></td>
</tr>
<tr>
<td>Xia et al. (2018)</td>
<td>999 participants from PNC. (Age 8-22, (M = 15.8), SD = 3.3)</td>
<td>Diagnostic characteristics not documented. (Likely consistent with other PNC studies. Used computerized diagnostic interviews.)</td>
<td></td>
</tr>
<tr>
<td>Sripada et al. (2021)</td>
<td>6593 participants from ABCD. (Age 9-10, (M = 9.9), SD = 0.6)</td>
<td>1228 ADHD, 2358 anxiety, 389 bipolar, 376 depression, 1636 developmental disorder, 713 eating disorder, 658 obsessive compulsive, 906 oppositional defiant/conduct disorder, 264 posttraumatic stress, 165 psychosis, 9 substance,</td>
<td></td>
</tr>
</tbody>
</table>

p-factor positively associated with functional connectivity between control network(s) and other networks.
<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Age (M, SD)</th>
<th>Diagnoses</th>
<th>Associated with default network functional connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lees et al. (2021)</td>
<td>11721</td>
<td>9.9, 0.6</td>
<td>5890 no diagnosis, 2428 ADHD, 1666 oppositional defiant, 374 conduct disorder, 318 depression, 510 generalized anxiety, 32 panic, 1048 separation anxiety, 547 social anxiety, 231 posttraumatic stress, 3130 specific phobia, 55 hallucinations, 215 delusions, 1096 obsessive compulsive, 428 bipolar.</td>
<td>609 suicidality/self-injury. (Used diagnostic interviews.)</td>
</tr>
<tr>
<td>Chen et al. (2022)</td>
<td>1858</td>
<td>10.0, 0.6</td>
<td>Diagnostic characteristics not documented. (Likely consistent with other ABCD studies. Used diagnostic interviews.)</td>
<td></td>
</tr>
<tr>
<td>Sripada et al. (2021)</td>
<td>6593</td>
<td>9.9, 0.6</td>
<td>1228 ADHD, 2358 anxiety, 389 bipolar, 376 depression, 1636 developmental disorder, 713 eating disorder, 658 obsessive compulsive, 906 oppositional defiant/conduct disorder, 264 posttraumatic stress, 165 psychosis, 9 substance, 609 suicidality/self-injury. (Used diagnostic interviews.)</td>
<td>p-factor negatively associated with default network functional connectivity.</td>
</tr>
<tr>
<td>Chen et al. (2022)</td>
<td>1858</td>
<td>10.0, 0.6</td>
<td>Diagnostic characteristics not documented. (Likely consistent with other ABCD studies. Used diagnostic interviews.)</td>
<td></td>
</tr>
<tr>
<td>†Karcher et al. (2021)</td>
<td>7581</td>
<td>9.9, 0.6</td>
<td>Diagnostic characteristics not documented. (Likely consistent with other ABCD studies.)</td>
<td></td>
</tr>
</tbody>
</table>
Internalizing positively associated with amygdala volume.

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Details</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albaugh et al. (2017)</td>
<td>371</td>
<td>Participants from the NIH MRI Study of Normal Brain Development.</td>
<td>General population. (Those with diagnosis of simple phobia, social phobia, adjustment disorder, oppositional defiant disorder, enuresis, encopresis, or nicotine dependency were not excluded. Used diagnostic interviews.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Longitudinal data collected from age 4-18, mean age at scan = 12.0, SD = 0.1)</td>
<td></td>
</tr>
<tr>
<td>Holmes et al. (2012)</td>
<td>1050</td>
<td>Participants from BGSP. (Age 18-35, M = 21.4, SD = 3.0)</td>
<td>Healthy. (Participants with self-reported psychiatric diagnoses were excluded.)</td>
</tr>
<tr>
<td>Lahey et al. (2021)</td>
<td>433</td>
<td>Participants from the Tennessee Twin Study. (Longitudinal questionnaire data collected in adolescence and scan in adulthood. Questionnaire mean age = 13.6, SD = 2.5. Scan mean age = 26.0, SD = 1.8)</td>
<td>General population. (Those with parent-reported diagnosis of autism or psychosis were excluded.)</td>
</tr>
<tr>
<td>*Durham et al. (2021)</td>
<td>9607</td>
<td>Participants from ABCD. (Age 9-10, M = 9.9, SD = 0.6)</td>
<td>Diagnostic characteristics not documented. (Likely consistent with other ABCD studies.)</td>
</tr>
<tr>
<td>*Hyatt et al. (2019)</td>
<td>1101</td>
<td>Participants from HCP. (Age: M = 28.8, SD = 3.7)</td>
<td>General population. (Those with a history of significant psychiatric treatment excluded.)</td>
</tr>
</tbody>
</table>

Distress (or constituent subfactors) negatively associated with ACC volume.

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Details</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohen et al. (2006)</td>
<td>265</td>
<td>Participants from the Brain Research International Database. (Age 18-70, M = 39.9, SD = 17.2)</td>
<td>Healthy. (Screened using self-reported symptoms.)</td>
</tr>
<tr>
<td>Hayakawa et al. (2014)</td>
<td>810</td>
<td>Participants. (Age 23-84, M = 55.3, SD = 9.8)</td>
<td>Healthy. (Screening method unclear.)</td>
</tr>
<tr>
<td>Zhu et al. (2021)</td>
<td>19592</td>
<td>Participants from UK Biobank. (Age 45-80, M = 62.6, SD = 7.4)</td>
<td>General population. (Including 2103 individuals with a self-reported diagnosis of depression,)</td>
</tr>
</tbody>
</table>
Depression negatively associated with reward positivity ERP.

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelson et al. (2016)</td>
<td>444 participants. (Age 13-15, $M = 14.4$, SD = 0.6)</td>
<td>General population youth. 40 first-onset depression, 113 anxiety, 21 externalizing/behavioral disorder. (Used diagnostic interviews. Those with depression at baseline were excluded.)</td>
</tr>
<tr>
<td>Nelson & Jarcho (2021)</td>
<td>204 participants. (Age: $M = 19.9$, SD = 2.5)</td>
<td>General population (college students). Based on self-reported symptoms, 5.9% met criteria for depression and 8.4% for social phobia.</td>
</tr>
<tr>
<td>Goldstein et al. (2020)</td>
<td>369 participants from the Stony Brook Temperament study. (Longitudinal data; baseline mean age = 9.2, SD = 0.4; follow-up mean age = 12.7, SD = 0.4)</td>
<td>General population. (Those with diagnosis of depression were excluded. Used diagnostic interviews.)</td>
</tr>
<tr>
<td>*Kessel et al. (2016)</td>
<td>373 participants. (Longitudinal data collected at both Age 3 and Age 9)</td>
<td>General population. (Used diagnostic interviews but reported only dimensional constructs.)</td>
</tr>
<tr>
<td>*Ait Oumeziane & Foti (2016)</td>
<td>260 participants. (Age: $M = 23.6$, SD = 10.3)</td>
<td>General population. (Based on DASS-21 depression, 186 were normal range, 43 mild, 21 moderate, and 7 severe.)</td>
</tr>
</tbody>
</table>

Thought disorder negatively associated with frontoparietal connectivity.

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker et al. (2019)</td>
<td>1010 participants from BGSP. (Age 18-71, $M = 33.7$, SD = 12.9)</td>
<td>608 no diagnosis, 210 psychosis, 192 affective disorders. (Used diagnostic interviews.)</td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Sample Characteristics</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Blain et al. (2020)</td>
<td>1003 participants from HCP. (Age 22-37, $M = 28.7$, SD = 3.7)</td>
<td>General population. (Those with a history of significant psychiatric treatment excluded.)</td>
</tr>
<tr>
<td>Thought disorder positively associated with DN connectivity.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xia et al. (2018)</td>
<td>999 participants from PNC. (Age 8-22, $M = 15.8$, SD = 3.3)</td>
<td>Diagnostic characteristics not documented. (Likely consistent with other PNC studies. Used computerized diagnostic interviews.)</td>
</tr>
<tr>
<td>Thought disorder negatively associated with DN connectivity.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baker et al. (2019)</td>
<td>1010 participants from BGSP. (Age 18-71, $M = 33.7$, SD = 12.9)</td>
<td>608 no diagnosis, 210 psychosis, 192 affective disorders. (Used diagnostic interviews.)</td>
</tr>
<tr>
<td>Meda et al. (2014)</td>
<td>1305 participants from the Bipolar-Schizophrenia Network on Intermediate Phenotypes Consortium. (Age: $M = 37.4$, SD = 13.8)</td>
<td>324 healthy controls, 296 schizophrenia, 300 psychotic bipolar, 179 relatives of schizophrenia, 206 relatives of bipolar. (Used diagnostic interviews.)</td>
</tr>
<tr>
<td>Externalizing (or constituent subfactors) negatively associated with P300 ERP amplitude.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costa et al. (2000)</td>
<td>563 participants from the Collaborative Study on the Genetics of Alcoholism. (Age 18-49, median = 30)</td>
<td>144 general population (without a history of substance dependence/misuse), 272 alcohol dependence, 26 antisocial personality, 121 comorbid alcohol dependence + antisocial personality. (Used diagnostic interviews.)</td>
</tr>
<tr>
<td>Habeych et al. (2005)</td>
<td>265 participants. (Age 10-12, $M = 11.0$, SD = 0.9)</td>
<td>25 oppositional defiant, 10 conduct disorder, 39 ADHD, 8 depression. (Used diagnostic interviews.)</td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Sample Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Bowyer et al. (2020)</td>
<td>334 participants. (Age 18-47, $M = 20.7$, SD = 4.1)</td>
<td>General population (college students)—pre-screened to sample low, moderate, and high externalizing.</td>
</tr>
<tr>
<td>Mobascher et al. (2010)</td>
<td>1318 participants. (Age 18-65, $M = 36.6$, SD = 13.4)</td>
<td>596 smokers and 722 never-smokers. (Psychiatric diagnoses were an exclusion criterion. Used diagnostic interviews.)</td>
</tr>
<tr>
<td>Koskinen et al. (2011)</td>
<td>294 participants. (Age 23-28, $M = 25.8$, SD = 1.0)</td>
<td>185 alcohol use, 3 drug use, 21 antisocial personality, 107 depression, 30 anxiety, 157 current smokers. (Numbers reflect larger sample of 358, rather than the EEG sample of 294. Used diagnostic interviews.)</td>
</tr>
<tr>
<td>Gilmore et al. (2010)</td>
<td>1938 participants from MTFS. (Age 17-18, $M = 18.2$, SD = 0.7)</td>
<td>24% of the sample met diagnostic criteria for at least one externalizing disorder. (Used diagnostic interviews.)</td>
</tr>
<tr>
<td>Gilmore et al. (2010)</td>
<td>506 participants from MTFS. (Age 17-18, $M = 17.5$, SD = 0.4)</td>
<td>71 healthy controls, 184 conduct disorder, 45 ADHD, 87 oppositional defiant, 68 nicotine use, 95 alcohol use, and 35 illicit drug use. (Used diagnostic interviews.)</td>
</tr>
<tr>
<td>*Ait Oumeziane & Foti (2016)</td>
<td>260 participants. (Age: $M = 23.6$, SD = 10.3)</td>
<td>General population. (Based on DASS-21 depression, 186 were normal range, 43 mild, 21 moderate, and 7 severe.)</td>
</tr>
</tbody>
</table>

*Note. *Failed replication. †Participants in this study were split into a discovery sample ($n = 3790$) and an independent replication sample ($n = 3791$); finding was present in both samples. ABCD = Adolescent Brain and Cognitive Development. ACC = anterior cingulate cortex. BGSP = Brain Genomics Superstruct Project. ERP = event related potential. DASS = Depression Anxiety Stress Scale. HCP = Human Connectome Project. MTFS = Minnesota Twin Family Study. PNC = Philadelphia Neurodevelopmental Cohort.
Figure 1. The Hierarchical Taxonomy of Psychopathology (HiTOP). Recent efforts by an international consortium of researchers have produced this dimensional system for organizing psychiatric symptoms (Kotov et al., 2017, 2020, 2021, 2022; Krueger et al., 2021; Ringwald et al., 2021; Watson et al., 2022). Figure depicts a simplified version of the HiTOP working model (top) and its approximate correspondence to DSM constructs (bottom). Constructs toward the top of HiTOP are broader and more general, whereas those at lower levels are narrower and more specific. For specific constructs at the lower HiTOP levels see (Kotov et al., 2017, 2022). HiTOP is a work in progress and will be updated on the basis of new data. Dashed lines indicate provisional elements requiring more study. Categorical diagnoses from DSM are not HiTOP constructs but are included to allow mapping of existing nosologies onto HiTOP, and those with the most prominent cross-loadings are listed in multiple places. Minus sign indicates negative association between histrionic personality and the detachment spectrum.
Figure 2. Flow chart of study selection process for review.

Identification of studies via databases and registers

Records identified from database search using PubMed.gov (n = 4735).

Records screened (n = 4734).

Reports sought for retrieval (n = 4335).

Reports assessed for eligibility (n = 4321).

Studies included in review (n = 164). Reports of included studies (n = 164).

Identification of studies via other methods

Additional records identified by HiTOP Neurobiological Foundations Workgroup Members (n = 19)

Reports sought for retrieval (n = 19)

Reports not retrieved: Duplicate records from PubMed Search (n = 2)

Reports assessed for eligibility (n = 17)

Reports excluded: No continuous statistical associations reported in large enough (sub)samples (n = 4)

Records removed before screening:
- Duplicate records removed (n = 1)
- Manual exclusion of non-human studies, meta-analyses, reviews, and case reports (n = 399)

Records excluded:
- Valid sample size < 194 (n = 3456)
- Sample criteria not met (n = 349)
- No neurobiological data (n = 58)
- No continuous psychopathology data (n = 196)
- No continuous statistical associations reported in large enough (sub)samples (n = 111)

Records screened (n = 4734).

Records excluded:
- Manual exclusion of non-human studies, meta-analyses, reviews, and case reports (n = 399)

Reports sought for retrieval (n = 4335).

Reports not retrieved (n = 14)

Duplicate records from PubMed Search (n = 2)
Figure 3. Frequency of studies in review investigating different HiTOP constructs, separated within each spectrum by different levels of the hierarchy. The “specific constructs” category includes constructs from the levels “Empirical Syndromes” and “Symptom Components and Maladaptive Traits.” Studies of mania were double-counted in the subfactor category, for both internalizing and thought disorder. EXT = externalizing.
Figure 4. Initial crosswalk between the Hierarchical Taxonomy of Psychopathology (HiTOP), Research Domain Criteria (RDoC), Addictions Neuroclinical Assessment (ANA), and the National Institute on Drug Addiction’s Phenotyping Battery (NIDA PhAB). Depicted links between HiTOP and RDoC are the strongest and most consistent associations according to a review of empirical studies (Michelini et al., 2021). Less prominent links are not shown. Due to paucity of relevant studies, it was not possible to link the recently introduced RDoC Sensorimotor domain to any HiTOP spectra, nor the HiTOP Somatoform spectrum to any RDoC domains. Negative associations are presented in red and positive associations in blue. Double arrows indicate that within the RDoC domain some constructs show positive links, whereas others show negative links to the HiTOP spectrum (for example, internalizing was associated positively with arousal and negatively with sleep constructs from the arousal/regulation domain). Associations between RDoC and ANA or NIDA PhAB domains are shown with symbols for approximate equality. Asterisk indicates a domain in NIDA PhAB but not ANA. (NIDA PhAB domains of metacognition and interoception have not been linked to RDoC and are not depicted.) Reprinted with permission from (Kotov et al., 2021).
Figure 5. Using the Hierarchical Taxonomy of Psychopathology (HiTOP) in clinical neuroscience. Step 1 involves selecting clinical phenotypes from HiTOP to study (figure depicts a simplified model; for full list of constructs see Kotov et al., 2017, 2022). Optimal HiTOP measurement uses fully dimensional instruments without skip-outs and, if possible, with multiple assessment modalities (e.g., self- and informant reports and clinical interviews). Step 2 depicts a sampling design appropriate for HiTOP-based research, which involves sampling from transdiagnostic patient populations or the general population, rather than a case-control design. However, researchers may oversample participants manifesting or at high risk for the problems of interest. Step 3 depicts testing associations between HiTOP phenotypes and neurobiological variables, ideally examining nested constructs at multiple levels of the hierarchy and examining constructs from multiple spectra to assess discriminant validity. Adapted with permission from (Latzman et al., 2020).
1. Identify relevant HiTOP constructs and appropriate measures.

2. Assess in representative population, potentially oversampling from range of maximal clinical relevance.

3. Test hypotheses about associations of HiTOP dimensions with neurobiological variables.
Click here to access/download

Supplemental Material
Supplement B HitOP neurobiology.xlsx