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ABSTRACT 138 

We conducted a large analysis of the neural correlates of Pavlovian fear conditioning 139 

acquisition and its sources of variability, using harmonised functional magnetic resonance 140 

imaging (fMRI) data from 2,199 individuals in nine countries, including 1,888 healthy 141 

controls and 311 individuals with anxiety-related and depressive disorders. Using mega-142 

analysis and normative modelling, we disentangled sources of variation across multiple 143 

levels. Brain regions robustly linked to conditioning can be broadly described as belonging to 144 

the “central autonomic–interoceptive” or “salience” network. Several specific task variables 145 

(e.g., reinforcement rate) robustly modulated the responses of these regions during fear 146 

conditioning. Additionally, brain activation during fear conditioning differed between healthy 147 

individuals and those with anxiety-related and depressive disorders, both at the group level 148 

and in the frequency of individual deviations identified through normative modelling. Finally, 149 

distinct brain activation patterns also arose in individuals with post-traumatic stress disorder 150 

and obsessive-compulsive disorder, extending previous findings in various domains. 151 

 152 

 153 

  154 
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Fear conditioning, also known as threat conditioning, is a psychological paradigm developed 155 

over a century ago to study associative learning mechanisms. It remains one of the most 156 

widely used and productive experimental models for investigating both normal and 157 

pathological fear and anxiety in humans1. Fear conditioning models how the association 158 

between an initially neutral stimulus (conditioned stimulus, CS) and an innately aversive 159 

stimulus (unconditioned stimulus, US) is learned. The success of learning in fear conditioning 160 

is typically assessed by comparing responses to the fear cue (CS+, paired with the US) and 161 

the safety cue (CS-, not paired with the US) across subjective, autonomic, or neural domains. 162 

Successful conditioning is indicated by greater responses to the CS+ than to the CS-2. In the 163 

brain, this involves activity changes within a “central autonomic–interoceptive” or “salience” 164 

network, which in humans includes functionally and anatomically connected regions like the 165 

dorsal anterior cingulate cortex (dACC) and the anterior insular cortex (AIC)3. Additionally, 166 

fear conditioning has been linked to decreased activity in regions like the ventromedial 167 

prefrontal cortex (vmPFC), although such decreases have been less extensively studied3. 168 

Although the amygdala plays a crucial role in fear conditioning in rodents4–6, and classical 169 

lesion studies have implicated the amygdala in human fear conditioning7, this relationship has 170 

not been consistently identified in human fMRI studies 3,8–12.  171 

Limitations in prior research on the neural correlates of human fear conditioning 172 

include the use of small sample sizes (typically n<30) and the reliance on heterogeneous 173 

neuroimaging processing and analytical methods3,13. While group-level meta-analyses can 174 

partially address the sample size issue3, individual-level mega-analyses offer additional 175 

advantages. These include enhanced statistical power, more precise effect size estimation, 176 

standardized preprocessing and analysis techniques, and substantially improved power to 177 

detect whether activation is modulated by individual variability -one of the primary goals of 178 

the current study14–16.   179 

Individual differences, such as sociodemographic factors (e.g., age) and trait variables 180 

(e.g., trait anxiety), are likely to modulate the neural correlates of fear conditioning, 181 

potentially affecting the generalizability of findings across groups, such as younger versus 182 

older adults or individuals with high versus low anxiety13. However, existing research on 183 

individual differences has been inconsistent and often hampered by limited sample sizes 184 

(n<5013) or sampling biases17. Moreover, task-specific variables, such as task instructions or 185 

characteristics of the US, may also influence the neural correlates of conditioning13. For 186 

example, compared to other USs, a tactile electric shock may elicit greater activation in the 187 
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dACC and the ventral supplementary motor area3. A primary challenge in this field is 188 

integrating prior data to accurately assess how individual differences and task variables affect 189 

neural outcomes. This complexity arises from variations in adjustable factors and sampling 190 

across studies and participants, highlighting the need for methods that can account for and 191 

isolate specific sources of variation—such as the normative modeling approach used here. 192 

Normative modeling integrates multiple smaller-scale studies into a common reference 193 

space—a standardised baseline against which to benchmark individual variations. This 194 

approach allows for meaningful comparisons across diverse studies by controlling for certain 195 

sources of variation. As a result, the variance associated with specific variables and 196 

individuals can be isolated, quantified, and systematically analysed18.  197 

Fear conditioning has also been used to study the development and persistence of 198 

mental health disorders marked by pathological fear, such as anxiety-related disorders1,19–22, 199 

which are highly prevalent and rank among the leading causes of disability worldwide22. 200 

However, there is ongoing debate over whether anxiety-related disorders consistently show 201 

abnormal fear conditioning at behavioral or neural levels 23,24 or if these abnormalities are 202 

specific to certain clinical groups—such as post-traumatic stress disorder (PTSD25) but not 203 

others, like social anxiety disorder (SAD), where findings have been more inconsistent26. 204 

Inconsistencies maybe due in part to small sample sizes (ns<100 for anxiety-related disorders 205 

as a group, ns<25 for comparisons among clinical groups). Furthermore, most research in this 206 

area has relied on case-control designs and traditional analysis techniques, both of which 207 

have limitations that could be addressed through normative modeling. This framework 208 

enables statistical inference for individual subjects relative to an expected population pattern, 209 

providing a more detailed examination of the heterogeneity underlying group-level 210 

analyses18.   211 

In this study with pre-registered hypotheses and analyses (cf. Materials and 212 

Methods), we used both mega-analysis and normative modelling to analyse individual-level, 213 

harmonized fMRI data acquired during fear-conditioning from 43 samples from 21 214 

laboratories across 9 countries (total n=2199), including both healthy participants and 215 

individuals diagnosed with anxiety-related and depressive disorders. First, we assessed the 216 

overall neural correlates of fear conditioning in healthy participants to provide a 217 

comprehensive delineation of the brain regions underlying human fear conditioning. Based 218 

on previous studies, we hypothesized that during fear conditioning, the CS+>CS- contrast 219 

would be associated with robust activations in regions such as the dACC, AIC, 220 
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pre/supplementary motor areas, and dorsolateral prefrontal cortex (dlPFC), whereas the 221 

CS+<CS- contrast would be associated with deactivations in the vmPFC and hippocampus. 222 

We expected the mega-analysis to be more sensitive than previous studies in detecting subtle 223 

effects in other brain regions not previously (or not consistently) identified. Second, we 224 

assessed variation among healthy participants. Given their role in mediating subjective 225 

arousal and autonomic expression of fear27, we hypothesised that regions including the 226 

vmPFC and the anterior-to-mid cingulate cortex would show the greatest between-subject 227 

heterogeneity. Third, we examined how individual differences (e.g., age, trait anxiety) and 228 

task variables (e.g., task instructions) influenced this variation. Finally, we explored 229 

differences in the neural correlates of fear conditioning between individuals with anxiety-230 

related and depressive disorders and healthy controls, as well as among clinical subgroups 231 

(e.g., PTSD, SAD).  232 

 233 

RESULTS  234 

All results are available in a free open-access repository (see Data availability statement). 235 

 236 

Human fear conditioning is associated with extensive brain activation and deactivation in 237 

healthy individuals  238 

In the mega-analysis (Fig. 1a), we included data from 1888 healthy individuals (42 239 

experiment samples) and used linear mixed-effect models (LMMs) to perform a mega-240 

analysis of whole-brain activation during fear conditioning (CS+>CS− contrast). We 241 

observed significant activation encompassing clusters within the bilateral anterior and mid 242 

insular cortices; the secondary somatosensory cortices (SII); the dlPFC; the lateral premotor 243 

cortices; and the dorsal and lateral cerebellum (Fig. 1b). Significant activation was also 244 

observed in multiple regions across the cortical midline, including the dACC extending to the 245 

pre-supplementary and supplementary motor areas (SMA), ventral posterior cingulate cortex, 246 

and dorsal precuneus (dPrec).   247 

Additionally, the CS+>CS- mega-analysis revealed the broad activation of subcortical 248 

regions, particularly the thalamus and basal ganglia. The largest of these activation patterns 249 

were observed in the dorsal striatum, specifically the caudate nucleus (CN); the globus 250 

pallidus extending to the striatum; the ventral tegmental area extending to the habenula; the 251 
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mediodorsal thalamus (Thal); and the midbrain tegmentum. Peak activation of the midbrain 252 

was noted in two bilateral clusters in the approximate location of the substantia nigra/red 253 

nucleus and pretectal nuclei. To specifically assess the role of the amygdala, we conducted a 254 

Region of Interest (ROI) mega-analysis focusing on this region (see Materials and 255 

Methods), which indicated that neither the left (Cohen's d = 0.13, 95% CI [-0.029, 0.624]) 256 

nor the right amygdala (Cohen's d = 0.12, 95% CI [-0.002, 0.260]) showed significant 257 

activation during fear conditioning (both p-values > 0.05). 258 

We also observed significant deactivations (CS+<CS- contrast) during fear 259 

conditioning, predominantly in regions of the default mode network (Fig. 1c). This included 260 

the posterior cingulate cortex (PCC) and precuneus; the vmPFC extending to the mPFC and 261 

subgenual cingulate cortex medially, as well as the left dorsal prefrontal cortex (dPFC); the 262 

bilateral angular gyri; and the parahippocampi and hippocampi (Hipp). Additional 263 

deactivation was observed in the lateral orbitofrontal cortex; the primary somatosensory 264 

cortex (SI); as well as the left temporal (TG) and fusiform gyri (see Supplementary Fig. S1 265 

for detailed activation and deactivation across axial, sagittal, and coronal slices). 266 

 267 

Healthy individuals show substantial heterogeneity in the neural correlates of fear 268 

conditioning  269 

We estimated voxel-wise normative models of fear-conditioning related activation using the 270 

CS+>CS- contrast from 894 controls (training sample), and specifying age, biological sex, 271 

sample, and task variables as covariates (see Materials and Methods for all variables. The 272 

normative modeling sample is smaller than the mega-analysis due to the requirement for 273 

participants to have data on all covariates used in model construction). Testing these models 274 

with a held-out test sample (n=646) showed good model fit with explained variance reaching 275 

0.3 in regions that showed activation during fear conditioning (Fig. 1b), and skew and 276 

kurtosis within acceptable limits (Supplementary Fig. S2). For each participant in our held-277 

out test sample, we then calculated a deviation score (z-score) within each voxel. In other 278 

words, for each participant, we quantified the distance from the predicted mean activation of 279 

each voxel, relative to the normative reference distribution for that voxel (Fig. 1d). While 280 

almost every voxel had at least 5 participants with large deviations (deviations >±2.6; 281 

Supplementary Fig. S3), controls frequently had large deviations (both positive and 282 

negative) within the most ventral region of the vmPFC and inferior temporal pole, which we 283 

interpret to reflect varying signal intensity within this region notoriously prone to signal drop 284 

out; we thus chose to interpret deviations within this region with caution (Fig. 1e).  285 
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 286 

Individual differences have small or nonsignificant associations with fear conditioning at 287 

the neural level 288 

We examined the role of the following individual differences variables using LMMs and 289 

normative models (Fig 1a): age, biological sex, and self-reported trait anxiety and depressive 290 

symptoms. In normative models, we analyzed both regression coefficients, reflecting each 291 

variable's contribution to the regression equation, and structure coefficients, indicating the 292 

direct bivariate relationship between a variable and brain activity without accounting for 293 

other predictors.  294 

In LMMs, age (n=1884 controls) and biological sex (n=1888 controls) showed a 295 

significant association with brain activation or deactivation during fear conditioning 296 

(Supplementary Results and Supplementary Fig. S4). However, the effect sizes were 297 

small. Regression and structure coefficients also showed minimal effects of age and 298 

biological sex (n=646 controls) (Supplementary Results and Supplementary Fig. S4). 299 

Neither trait anxiety (n=1402 controls), using either harmonised or non-harmonised scores 300 

(Supplementary Methods), nor depressive symptoms (n=213 controls) were significantly 301 

associated with brain activation or deactivation during fear conditioning in LMMs. Similarly, 302 

elastic net regressions showed that whole-brain deviation scores derived from normative 303 

models could not explain the variance in individual levels of trait anxiety (n = 751 controls 304 

and cases; r^2 = -0.095, p = 0.459), nor depressive symptoms (n = 152 controls and cases; r^2 305 

= -0.257, p = 0.605). See Methods for a note on negative r^2 values. 306 

 307 

Task variables have a robust effect on brain activation during fear conditioning 308 

The influence of task variables on brain activation during fear conditioning was also 309 

examined using LMMs and structure coefficients from normative models in healthy controls.  310 

Several task variables were associated with consistent effects across individuals. 311 

These included pre-task instructions about CS-US contingency, the type of US, the use of 312 

paradigms with multiple CSs (i.e., more than one CS+ or CS-), the reinforcement rate (i.e., 313 

percentage of CS+ followed by a US), and possible US confounding through inclusion of the 314 

US within the CS+>CS- contrast. 315 

Partial instructions about CS-US contingency (n=1388) were associated with 316 

significantly increased activation in the supplementary motor area and superior parietal 317 

lobule compared to no instructions about contingency (n=500) in LMMs. Structure 318 



9 

coefficients from the normative models (n=646) showed that partial instructions (as 319 

compared to no instructions) produced a model predicting more activation in the bilateral 320 

anterior insula, the thalamus, the left caudate, clusters within the dorsomedial prefrontal 321 

cortex, the dorsolateral precuneus, and in the posterior region of the vmPFC. The model also 322 

predicted less activation within the bilateral visual cortex, the anterior medial temporal gyrus, 323 

and in the anterior vmPFC with the use of partial instructions (Figure 2a). Note that we 324 

excluded instructed conditioning studies (Materials and Methods).  325 

Compared with an auditory US (n=337), a tactile electric shock US (n=1472) 326 

produced significantly greater activation in bilateral dorsal mid-insula, dorsal medial 327 

thalamus, and pre-supplementary motor area, extending to the dACC (n=337) in LMMs. In 328 

normative modelling analyses, a tactile electric shock US predicted increased activation 329 

within the dACC extending to the pre-supplementary motor area, the dorsal precuneus, 330 

secondary somatosensory cortex, the bilateral dorsal mid- to- posterior insula, the midbrain 331 

and pons, and the superior cerebellum, and less activation (i.e., more deactivation) within an 332 

expanse of the vmPFC, and S1. Moreover, the use of an auditory US was significantly 333 

associated with increased activation in the left auditory cortex and was predictive of 334 

increased activation in the bilateral auditory cortex (superior temporal lobe) and less 335 

deactivation (i.e., more differential activation) within an expanse of the vmPFC extending to 336 

the dorsomedial prefrontal cortex, posterior cingulate cortex, angular gyrus, and S1 (Figure 337 

2b).  338 

In LMMs, compared to paradigms with a single CS+ (n=1283), paradigms with 339 

multiple CS+ (n=605) produced increased activation in the left supplementary motor area 340 

(SMA) and left dorsal precuneus and widespread increased deactivation in regions including 341 

the bilateral temporal poles, the right parahippocampal gyrus extending to the fusiform gyrus, 342 

the left visual association cortex extending to the angular gyrus, and the right primary motor 343 

and somatosensory cortex. Comparing paradigms with multiple CS- (n=302) and those with a 344 

single CS- (n=1586) revealed identical regions with increased activation to paradigms with 345 

multiple CS+. Conversely, increased deactivation was shown in the bilateral anterior 346 

hippocampus, ventral PCC, primary motor and somatosensory cortex, precuneus, and right 347 

mid-insula. In normative models, this was modelled using two variables (multiple CS+ and 348 

multiple CS-). Multiple CS+ predicted less activation within the bilateral amygdala, a 349 

bilateral expanse of S1, the angular gyrus, the posterior cingulate cortex, the bilateral 350 

putamen and caudate, and the lingual gyrus. Similarly, multiple CS- predicted decreased 351 

activation within a bilateral expanse of S1 and the lingual gyrus (Figure 2c).  352 
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Reinforcement rate, treated as a continuous variable, did not relate to brain activation 353 

during conditioning in LMMs. However, due to the non-normal distribution of reinforcement 354 

rates across studies and individuals, we categorized reinforcement rates (e.g., 30%, 50%, and 355 

100%) and conducted ANOVA-like LLMs followed by pairwise comparisons with Holm-356 

Bonferroni correction, which revealed significant effects (Figure 2d). In particular, the 357 

comparisons involving the 50% reinforcement rate category was the category where 358 

significant differences between categories occurred most frequently. The significant 359 

differences between the reinforcement rate categories occurred both with (Supplementary 360 

Fig. S5) and without (Supplementary Fig. S6) US confounding. The structure coefficients 361 

for reinforcement rate (as a linear association), showed that a higher reinforcement rate 362 

predicted greater activation within visual regions (calcarine, lingual gyrus and cuneus), the 363 

precuneus, the left dorsolateral prefrontal cortex, the superior gyrus of the temporal lobe, and 364 

(less deactivation of) an anterior region of the vmPFC. Conversely, a higher reinforcement 365 

rate predicted less activation within the mid-cingulate cortex, the bilateral anterior insula, a 366 

posterior region of the vmPFC as well as the thalamus and caudate (Figure 2d). 367 

Finally, potential US confounding (n = 997), compared to no confounding (n = 891), 368 

was associated with significantly increased widespread activation during fear conditioning 369 

(CS+ > CS- contrast). This activation was observed across the bilateral fusiform and lingual 370 

gyri, temporal poles, angular gyri, posterior insula, primary motor cortex, retrosplenial cortex 371 

(extending to the posterior hippocampus), and right amygdala, predominantly in the 372 

superficial amygdala, in linear mixed models (LMMs). Similarly, structure coefficients from 373 

the normative models showed that the model predicted greater activation within the bilateral 374 

mid-cingulate cortex extending to the dorsomedial prefrontal cortex and pre-supplementary 375 

motor area, angular gyri, mid-to-posterior insula, superior temporal gyrus and temporal poles, 376 

fusiform gyri and lateral mid-occipital gyrus, amygdala, caudate, dorsal thalamus, and 377 

dorsolateral cerebellum with potential US confounding (Figure 2e).  378 

The remaining task variables (for example, the number of trials during 379 

preconditioning) showed weaker effects or were not significantly associated with brain 380 

(de)activation during conditioning in the mega-analysis or normative modelling analyses 381 

(Supplementary Results and Supplementary Figs. S7 and S8). 382 

 383 

Cases and controls show differences in neural activity during fear conditioning 384 

In the mega-analysis, individuals with anxiety-related and depressive disorders (cases, 385 

n=311) showed significantly increased activation in the right ventrolateral prefrontal cortex 386 
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(anterior pars orbitalis), dorsal frontal pole, posterior cingulate cortex, left temporal pole, and 387 

bilateral primary motor areas compared to controls (n=1888) (Fig. 3a). Similar results were 388 

found when comparing individuals with anxiety-related disorders (i.e., excluding major 389 

depressive disorder; remaining n=297) and controls, with additional clusters observed in the 390 

dorsal prefrontal cortex, visual association cortex, and primary somatosensory cortex 391 

(Supplementary Fig. S9). After excluding individuals who were taking medication at the 392 

time of the scan, those with anxiety-related and depressive disorders (n=221) still showed 393 

significantly increased activation in the dorsal medial prefrontal cortex, dorsal PCC extending 394 

to the superior parietal lobule, left medial TG and bilateral ventrolateral prefrontal cortex 395 

compared to controls (Supplementary Fig. S10).  396 

In normative modelling, we tested our clinical test sample (260 controls + 222 cases) 397 

against our reference normative models. This analysis compared the individuals’ deviation 398 

scores (z-score) within each voxel, and quantified, as a percentage of the sample, the 399 

frequency of participants with large positive or large negative deviations (Fig. 3b). Cases 400 

showed a different pattern of deviation frequency than controls. Large deviations (i.e., more 401 

activity than would be predicted by the model) were common across cases within the 402 

dorsomedial prefrontal cortex, the primary somatomotor cortex, precuneus, the bilateral 403 

primary visual cortex (medial occipital lobe extending to the inferior medial and inferior 404 

lateral lobe) extending to the lingual and fusiform gyrus. As with controls, cases frequently 405 

had large negative deviations within the most ventral region of the vmPFC. Finally, when we 406 

compared the frequency of extreme deviations throughout the whole brain (Normative 407 

Probability Maps thresholded at > ±2.6), we found that cases had, on average, a greater 408 

frequency of extreme deviations than controls (Mann Whitney U-test = 111167.5, p= 0.014; 409 

Fig. 1h). 410 

 411 

Individuals with PTSD or OCD show distinct patterns of activation and deviations that 412 

discriminate them from those with other disorders 413 

We divided our patient sample by primary diagnosis (PTSD, n=141; OCD, n= 68; GAD, 414 

n=48; and SAD, n=31; other diagnoses were not included due to small sample size). 415 

ANOVA-like LMMs indicated that there were significant differences in brain activation 416 

during conditioning among patient groups. Post-hoc pairwise comparisons corrected for 417 

multiple comparisons showed that the most significant differences occurred between 418 
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individuals with PTSD and OCD with respect to individuals with GAD and SAD 419 

(Supplementary Fig. S11). 420 

Similarly, normative modelling analyses identified a significant difference in the 421 

frequency of large deviations among patient groups (Kruskal-Wallis H-test = 71.529, 422 

p=1.984^-13; Fig. 3c). Follow-up Mann Whitney U-test’s (FDR corrected for multiple 423 

comparisons) clarified, for example, that extreme deviations occurred most frequently in 424 

individuals with PTSD, as compared to other disorders, followed by OCD. We then 425 

illustrated the location of these extreme deviations at the voxel level to determine whether 426 

they were spatially overlapping within and between patient groups (Fig. 3d). Individuals with 427 

PTSD showed frequent large positive deviations within the bilateral medial occipital lobe 428 

extending to the inferior temporal lobe and lingual gyrus, bilateral vlPFC, an expanse of the 429 

dmPFC, precuneus, and bilateral amygdala. They also showed frequent large negative 430 

deviations within an expanse of the vmPFC (posterior vmPFC focus), precuneus, and a focus 431 

of the lingual gyrus and fusiform gyrus. There were very few regions wherein individuals 432 

with GAD showed overlapping large deviations, and similarly for SAD except for a small 433 

region of the bilateral lingual gyrus frequently found to have large positive deviations. 434 

Individuals with OCD showed frequent large deviations within the inferior parietal cortex, 435 

and temporal pole. 436 

 A support vector machine could not classify cases from controls better than chance 437 

using whole-brain deviation maps (mean AUC = 0.44 +/- 0.07, p = 1.0). However, a multi-438 

class support vector classifier confirmed a unique pattern of deviations among cases (Fig. 439 

3e). More specifically, PTSD, on average, was accurately classified 54.55% of the time 440 

(mean F1 score = 0.58; p= 2.06x10-23, balanced accuracy = 0.43 where chance level across 4 441 

classes = 0.25). Interestingly, despite fewer overlapping extreme deviations within the OCD 442 

group, the classifier was able to accurately label individuals with OCD 73.74% of the time 443 

(mean F1 score: 0.57; p =1.71x10-7). GAD and SAD were only accurately classified 31.78% 444 

(mean F1 score: 0.35) and 13.33% (mean F1 score: 0.17) of the time, respectively, and were 445 

often misclassified as OCD. The mean voxel-wise coefficient weights and frequency of 446 

contribution (in penalised permutations) to this classification are displayed in 447 

Supplementary Fig. S12. 448 

 449 

 450 
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DISCUSSION 451 

We compiled the largest (n=2199) sample of individual-level fear conditioning fMRI data to 452 

date to comprehensively delineate the neural correlates of human fear conditioning, to assess 453 

the influence of several relevant sources of variation - including individual differences and 454 

task variables- and to evaluate potential differences in fear conditioning at the neural level 455 

between individuals with anxiety-related and depressive disorders and controls.  456 

Our individual-level mega-analysis mapped fear conditioning activation to the 457 

“central autonomic–interoceptive” or “salience” network. As hypothesised, fear conditioning 458 

was associated with robust activations in the anterior insula, ventral striatum, pre-459 

supplementary /supplementary motor areas, dorsal anterior cingulate cortex, and dorsolateral 460 

prefrontal cortex. It was also associated with activation in several subcortical regions, 461 

particularly the thalamus and basal ganglia. Also as hypothesised, fear conditioning was 462 

associated with robust deactivations in the ventromedial prefrontal cortex and hippocampus. 463 

Other brain regions that were deactivated during conditioning included primarily regions of 464 

the default mode network (e.g., posterior cingulate cortex and precuneus). The brain 465 

activation and deactivation patterns observed in this study closely mirror those identified in a 466 

prior group-level meta-analysis of fear conditioning (n = 677)3. This consistency is notable, 467 

especially considering the minimal overlap between the two studies, with only six common 468 

samples. These findings confirm that the neural mechanisms underlying fear conditioning are 469 

robust, reliably engaging key brain regions involved in threat and safety processing, and 470 

support the continued use of fear conditioning paradigms in basic neuroscience and clinical 471 

research. Our findings highlight the utility of fear conditioning paradigms for developing 472 

interventions targeting specific brain regions and suggest that normative modeling can 473 

enhance precision by tailoring treatments to individuals with abnormal activation patterns.  474 

The amygdala was not robustly activated during fear conditioning in either our mega-475 

analysis or specific ROI-mega-analysis, consistent with our previous group-level meta-476 

analysis3. Inconsistencies regarding amygdala involvement in human fMRI conditioning 477 

studies have been attributed to several factors. These include inadequate small sample sizes, 478 

temporal specificity (i.e., amygdala activation occurs during early trials and habituates 479 

thereafter28,29, so averaging across all conditioning trials may obscure these effects), 480 

anatomical specificity (the amygdala consists of distinct subregions, such as the basolateral 481 

(BLA) and centromedial (CMA) amygdala, and averaging responses may mask specific 482 
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activations8,10, and methodological factors8. A recent fMRI fear conditioning study with a 483 

large sample (n=601, including individuals with anxiety-related disorders and controls) and 484 

using a multiple CS (2CS+, 1CS-) paradigm found significant amygdala activation during the 485 

early phase (first four trials) of fear conditioning, with distinct activation patterns in the BLA 486 

and CMA8. In our study, like most previous work3, we used the CS+ vs CS− contrast 487 

averaged across all trials for most samples. This approach may have overlooked early-trial 488 

specific amygdala activation and lacked the sensitivity to capture trial-by-trial dynamics. 489 

However, in our previous meta-analysis specifically comparing early and late conditioning, 490 

we also did not find evidence that the amygdala was activated during early conditioning 491 

trials3. Notably, in the current study, we identified specific task variables -the use of 492 

paradigms with multiple CS+ or US confounding - or diagnostic categories (such as PTSD; 493 

see also 25) that modulate amygdala activity during conditioning. Our findings also 494 

underscore the limitations of combining individuals with anxiety-related disorders and 495 

controls in this type of analysis. In any case, together with previous findings, our study 496 

highlights the importance of considering temporal dynamics when assessing amygdala 497 

activity during human fear conditioning8.   498 

Sociodemographic factors, such as age and biological sex, had only minor effects, 499 

suggesting that fear conditioning mechanisms are relatively stable at the neural level across 500 

different ages and between sexes. Additionally, none of our analyses found significant 501 

associations between brain activation during conditioning and levels of trait anxiety or 502 

depressive symptoms. While some mental health frameworks suggest that dimensional 503 

constructs of psychopathology, like trait anxiety, may better reflect neural activation 504 

patterns30, the variability and complexity in the neural states underlying these constructs and 505 

their lack of direct mapping to neural processes makes it challenging to identify clear linear 506 

relationships31,32.  507 

Both LMMs and normative modeling analyses indicated that an important source of 508 

variation in neural responses during fear conditioning is related to the nature of the task itself. 509 

Activation within key “fear conditioning regions” was strongly influenced by task design 510 

choices (e.g., reinforcement rate, partial instructions) and contrast design (e.g., US 511 

confounding). These findings help clarify previous inconsistencies in the literature (see 512 

comment on the amygdala). More importantly, they provide essential guidance for designing 513 

future human fMRI fear conditioning studies. Specifically, researchers can now anticipate the 514 
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expected effects, along with their magnitudes, of various task or contrast design choices at the 515 

neural level, allowing for adjustments in advance.   516 

The differences in brain activation during conditioning between individuals with 517 

anxiety-related and depressive disorders and healthy controls that were found in the mega-518 

analysis aligned with normative modeling results, which showed that cases had a higher 519 

frequency of large deviations compared to controls. Importantly, these differences remained 520 

significant even after excluding cases on medication. This is crucial, as commonly used 521 

treatments like selective serotonin reuptake inhibitors (SSRIs) can influence brain activation 522 

patterns observed with fMRI33. Thus, the observed differences are unlikely to be due to the 523 

effects of medication. When the analysis was limited to anxiety-related disorders, significant 524 

differences in brain activation persisted, indicating that individuals with pathological anxiety 525 

are characterized by abnormal neural responses during fear conditioning. These findings 526 

suggest that such abnormalities could eventually serve as neural markers for anxiety-related 527 

disorders34,35.  528 

Among individuals with anxiety-related disorders, those with PTSD and OCD showed 529 

distinct patterns of bran activation and had distinct patterns of voxel-wise deviations that can 530 

be used to distinguish them from other anxiety-related disorders. This provides 531 

neurobiological support for the decision of current diagnostic classifications to separate these 532 

conditions36. In addition, it may provide new insights into the underlying mechanisms of 533 

psychopathology. The sample of individuals with PTSD was still relatively heterogeneous, 534 

with data from three independent samples, and yet there were often overlapping extreme 535 

positive deviations. Furthermore, using the derived deviation scores we were able to 536 

differentiate and classify individuals with PTSD and OCD with striking precision, compared 537 

to GAD and SAD. This is consistent with the previous literature that used mean averaging 538 

methods and reported differences in activation levels between groups of individuals with 539 

PTSD, compared to controls25,37. Taken together, this suggests that the neural mechanisms 540 

engaged during a fear conditioning paradigm are specifically relevant to the psychopathology 541 

of, and to some extent, similarly altered across individuals with PTSD; reinforcing the notion 542 

that fear conditioning is a foundational process in PTSD psychopathology, and as such, 543 

related tasks are a useful clinical model 20. The accurate differentiation of OCD, despite few 544 

regions of overlapping large deviations, appeared to be driven by consistent coefficient 545 

weights with a region of the bilateral superior temporal gyrus and right vlPFC. Combined 546 
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with no strong behavioural evidence38, mixed imaging evidence of differences in fear 547 

conditioning tasks in this population39–42, and evidence of altered baseline activity within the 548 

superior temporal region43, this finding may be interpreted as capturing compensatory 549 

mechanisms that individuals with OCD engage to overcome obsessions and achieve the same 550 

behavioural output38,43,44. Despite significant differences in the frequency of extreme 551 

deviations between individuals with GAD and SAD compared to controls, their limited 552 

spatial overlap and less accurate classifications, suggest that there is significant heterogeneity 553 

in fear conditioning among individuals with these diagnoses. Thus, while we suggest that the 554 

psychopathology of PTSD is uniquely related to fear or threat processing as captured by fear 555 

conditioning tasks, we propose that other anxiety-related disorders, particularly GAD and 556 

SAD are less so.  557 

Our study has several limitations. First, despite using harmonized pre-processing 558 

pipelines and statistical models to account for site differences, variations in diagnostic 559 

routines and imaging acquisition contributed to sample heterogeneity, particularly among 560 

individuals with anxiety and depressive disorders (a label that includes already heterogenous 561 

disorders). Second, mega-analyses may have limited power to detect effects in small 562 

subgroups (e.g., SAD patients). Third, for participants with a mental health diagnosis, we 563 

focused on primary diagnoses and we could not assess (or control for) comorbidity. Fourth, 564 

while our normative models adjusted for site, age, biological sex, and task influences on brain 565 

activity, future studies should explore the impact of adding more variables in the model 566 

construction. Finally, cross-sectional data on brain activation during fear conditioning raises 567 

concerns about the reliability of outcome measures. Although fMRI-based fear conditioning 568 

shows limited test-retest reliability at the whole-brain level, significant within-subject 569 

similarity across repeated time points has been observed45, suggesting that large test-retest 570 

samples could help further validate the normative modeling approach, as demonstrated in 571 

other tasks46.  572 

With this work, we provide the largest analysis of the neural correlates of human fear 573 

conditioning and potential sources of variation to date. Our results confirm that human fear 574 

conditioning is a robust phenomenon at the neural level, consistently engaging multiple brain 575 

regions within the central autonomic-interoceptive or salience network. Our comprehensive 576 

review of the influence of task design choices on elicited and predicted brain activation can 577 

be used to help interpret differences in the previous literature and should remind researchers 578 
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of the potentially significant influence of task design choices. Finally, we found that there are 579 

overall differences in fear conditioning at the neural level between individuals with anxiety-580 

related and depressive disorders and controls, and that a unique mechanism of PTSD 581 

psychopathology is well captured by fear conditioning paradigms, supporting the use of these 582 

models to study this disorder.  583 

 584 

 585 

  586 
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MATERIALS AND METHODS 587 

The current manuscript combines two pre-registered analyses of individual-level fear 588 

conditioning fMRI data (https://osf.io/7n953; https://osf.io/w74bt . Data were collated from 589 

43 samples originating from 23 sites in 9 countries. Collation was coordinated by the lead 590 

group (IDIBAPS Barcelona). ENIGMA Fear Conditioning is part of the larger ENIGMA-591 

Anxiety Working Group47. Table 1 and Table 3 summarize the descriptive information on 592 

the samples. Informed consent was obtained from all participants by the sites providing their 593 

data. Some site-specific data have been reported previously, but no reports have examined all 594 

individual data together. 595 

 596 

Fear conditioning task 597 

We included data from participants who completed a fear conditioning experiment during an 598 

fMRI scan. There are several human fear conditioning paradigms, which vary based on the 599 

time elapsed between the CS and the US (e.g., delay, trace, simultaneous, or backward 600 

conditioning), the use of one (single-cue) versus two or more (differential-cue) CSs, and the 601 

instructions given to participants48: 1) No instructions: For example, “During this experiment, 602 

you will see various images and might experience mild electric shocks at certain times”; 2) 603 

Partial instructions: For example, “During this experiment, you may see a particular image 604 

sometimes followed by a mild electric shock. However, the shock won’t happen every time 605 

you see the image, and sometimes it might not appear at all. Pay attention to the images, as 606 

they might give you some indication of when the shock could occur”; 3) Full instructions 607 

(instructed conditioning): For example, “During this experiment, you will see the image X, 608 

which is always followed by a mild electric shock. Whenever this image appears, it will be 609 

followed by the shock shortly afterward. No other images will be associated with the shock”.  610 

We focused on delay differential cue-conditioning paradigms with no or partial 611 

instructions (i.e., excluded instructed conditioning studies), and focused our analysis on 612 

comparing the response to a CS+ compared to a CS-. Table 2 summarises information on the 613 

fear conditioning tasks included in this manuscript. 614 

 615 

Non-imaging data: sociodemographics and individual differences 616 

All sites were asked to provide information regarding sociodemographics (age, biological 617 

sex) and individual differences: trait anxiety, assessed with the Trait subscale of the State-618 

https://osf.io/7n953
https://osf.io/w74bt
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Trait Anxiety Inventory (STAI-T)49; and depressive symptoms, assessed with the Beck 619 

Depression Inventory (BDI)50 (Supplementary Table S1). For individuals with anxiety-620 

related and depressive disorders, sites were asked about principal mental health diagnosis and 621 

psychotropic medication use at the time of the scan (Supplementary Table S2). Previous 622 

normative studies of trait anxiety (STAI-T) have shown additive and multiplicative 623 

differences across countries, for which we harmonised trait anxiety scores across countries 624 

using ComBat14(Supplementary Methods) and conducted subsequent analyses twice: once 625 

with the raw scores and once with the country-harmonised scores. 626 

 627 

Non-imaging data: task-related variables 628 

We collected information about the following task variables: instructions given to the 629 

participant about contingency prior to the task (partial versus no information); use of a pre-630 

conditioning phase (where the CSs are presented prior to any presentation of the US); number 631 

of trials during pre-conditioning; use of a paradigm with multiple CSs (i.e., more than one 632 

CS+ or CS-) during conditioning; number of CS+ and CS- trials during conditioning; average 633 

ITI (inter-trial interval); average ISI (inter-stimulus interval, i.e., between the CS+ and the 634 

US); reinforcement rate (percentage of CS+ followed by a US); type of US; type of CS; 635 

potential US confounding (i.e. whether trials followed by the US were included in the CS+ vs 636 

CS- contrast, and therefore the effects of the US may confound the effects of the CS+); the 637 

number of CS+ trials included in the fMRI contrast; the number of CS- trials included in the 638 

fMRI contrast , and the use of a concurrent task during conditioning. For studies assessing 639 

awareness (conscious recognition of the association between the CS+ and the US, after the 640 

task), we also asked about participant´s contingency awareness (yes vs. no). Task variables 641 

were not explicitly listed in the pre-registration. The decision to include these variables was 642 

based on previous research and their inclusion in the analyses was contingent on their 643 

availability.    644 

   645 

Processing of neuroimaging data 646 

We included only neuroimaging data acquired with whole-brain coverage. Individual-647 

level raw task-based fMRI data were processed using the Harmonized Analysis of Functional 648 

MRI pipeline (HALFpipe, version 1.2.2)51, a tool developed within the ENIGMA consortium 649 

to harmonise fMRI analyses across sites and facilitate reproducible analyses. HALFpipe 650 

provides a standardised workflow that extends fMRIprep52 with several additional 651 

preprocessing steps, including spatial smoothing, grand mean scaling, temporal filtering, and 652 
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confound regression. Moreover, HALFpipe generates a standardised quality assessment of 653 

the preprocessing outputs and imaging raw data (Supplementary Table S3). We used 654 

HALFPIPE default parameters (smoothing using 6mm FWHM; confound removals using 655 

ICA-AROMA; and a high-pass filter of 125 s).  656 

For the current study, each site was provided with a comprehensive manual to 657 

perform image pre-processing and quality control with HALFpipe in a fully harmonised 658 

manner, and each group shared the HALFPIPE output files for each individual along with the 659 

non-imaging data for each individual. The lead group (IDIBAPS-Barcelona) processed 5 660 

sites, aggregated all the data, and carried out additional quality control procedures and 661 

measures to ensure the comparability of the data, as described in the Supplementary 662 

Methods.  663 

 664 

Statistical analyses 665 

We conducted two types of statistical analyses: mega-analyses and normative 666 

modelling analyses. 667 

 668 

Mega-analyses 669 

Participants 670 

We included data from 2199 participants (M_Age=25.26, SD=5.47; 57.2% female), 671 

comprising 1888 healthy controls (M_Age=25.85, SD=8.51; 51.53 % female) and 311 672 

individuals with a primary diagnosis of an anxiety-related or depressive disorder 673 

(M_Age=29.91, SD=10.75; 58.84 % female) (Table 3). Diagnoses were established with 674 

structured clinical interviews.  675 

 676 

Pre-scaling 677 

Although we used the exact same processing protocol and conducted extensive quality 678 

control (see above), we observed differences in the BOLD response between samples, most 679 

likely due to varying units of measurement (note that MRI scans are acquired in arbitrary 680 

units53. To address these differences, we pre-scaled the images for healthy controls so that, 681 

for each sample, the voxel-wise-median standard deviation (after removing the effects of 682 

covariates) was 1 (see Supplementary Methods). We then applied the pre-scaling 683 

parameters obtained from the healthy controls to the cases (individuals with a primary 684 
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diagnosis of an anxiety-related or depressive disorder). This approach differs from using the 685 

individual z-statistic images (i.e., dividing the BOLD response by its standard error), which 686 

we did not adopt for the mega-analysis. The reason is that the standard error may differ 687 

between cases and controls, and thus, differences in z-statistics between groups could reflect 688 

differences in the standard error rather than in the BOLD response (for more details, see 689 

Supplementary Methods). 690 

 691 

Analyses 692 

Differences in brain coverage across sites prevented us from using the standard ComBat 693 

method, which determines the harmonisation parameters using all voxels14. Additionally, 694 

there was no need to remove differences in scaling because we had already pre-scaled the 695 

images as described above. Thus, we used LMMs (with the sample as a random intercept) to 696 

investigate: 1st the pattern of brain activation during fear conditioning in healthy controls and 697 

in cases (individuals with anxiety-related and depressive disorders), which tested whether the 698 

mean activation in each voxel was non-null; 2nd the pattern of differences in brain activation 699 

during fear conditioning between cases and controls, which tested whether activation in each 700 

voxel was different between cases and controls; 3rd the pattern of differences in brain 701 

activation during fear conditioning among patient groups (PTSD, OCD, GAD, SAD), testing 702 

whether activation in each voxel differed among patient groups;  4th the potential influence 703 

of individual differences and task variables (see above) on brain activation during fear 704 

conditioning in healthy controls, which tested whether activation in each voxel was 705 

significantly associated with each task variable. In all models, we incorporated age and sex as 706 

covariates. Significant LMMs comparing three or more groups (analog to ANOVAs) were 707 

followed by pairwise comparisons with Holm-Bonferroni correction.  708 

We also conducted an ROI mega-analysis focusing on the amygdala. For this analysis, we 709 

extracted the pre-scaled BOLD response in the left and right amygdala based on the 710 

Automated Anatomical Labeling atlas, version 3 (AAL3)54. We used an LMM, with age and 711 

sex as covariates, to test whether the mean activation significantly differed from zero.  712 

We fitted the LMMs using custom functions (included in ‘combat.enigma’ R 713 

package) that call the 'nlme' R package voxel-wise and address voxel-specific details (e.g., 714 

varying collinearity due to differing brain coverage; see Supplementary Methods). FSL was 715 
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then used to derive cluster-based corrected p-values using Gaussian Random Field (GRF) 716 

theory.  717 

Effect sizes 718 

To compare the effect sizes of different variables and to exclude findings with 719 

negligible or very small effects, we converted the regression coefficients of the peaks into 720 

correlation coefficients (Pearson r). For variables comparing two groups (e.g., cases vs. 721 

controls), we also calculated the corresponding standardised mean differences (Cohen's d). 722 

We considered effects with r<0.2 (roughly equivalent to d<0.4 for balanced binary variables) 723 

to be small, and only highlighted larger effects (i.e., r>0.2, i.e., at least moderate) in the main 724 

text. It is important to note that peak effect sizes should be interpreted with caution, as they 725 

correspond to the peaks of clusters of statistical significance and are, therefore, larger than 726 

those obtained by other methods. Effect sizes for all the LMMs can be found at 727 

https://zenodo.org/uploads/13933681 728 

 729 

Normative modelling analyses 730 

Participants 731 

We included data from 2022 participants; 1800 healthy controls (age range 8-66 years, mean 732 

age: 25.66 ± 8.4, 53.05% female) and 222 individuals with anxiety-related and depressive 733 

disorders (age range 9-63, mean age: 28.27 ± 11.06, 54.95% female) to build and test the 734 

normative models. See Table 1 note to explain discrepancy in participant numbers from 735 

mega-analysis. 736 

Generating Normative Models of Activation to the CS+ > CS- contrast 737 

The z-statistic maps (files) from the CS+ > CS- contrast for each participant were used as 738 

inputs (response variables) for the normative models. We created a normative model of fear-739 

related activation per voxel, as a function of age, sex, and task variables by training a 740 

Gaussian Bayesian Linear Regression (BLR) model to predict activation for the CS+ > CS- 741 

contrast55. The task variables modelled were: the instructions given to the participant about 742 

the CS-US contingency prior to the task, the number of trials during preconditioning, the type 743 

of US, the number and type of CS+ and CS- stimuli (“use of a paradigm with multiple CSs” 744 

https://zenodo.org/uploads/13933681
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in LMM models), the number of CS+ and CS- trials included in the CS+ > CS- contrast, the 745 

average ITI, the average ISI, the reinforcement rate, and US confounding. We included 746 

dummy coded site-related variables (sample, and MR strength) and a b-spline basis 747 

expansion as additional covariates of no-interest. This was performed in the Predictive 748 

Clinical Neuroscience toolkit (PCNtoolkit) software v0.26 749 

(https://pcntoolkit.readthedocs.io/en/latest) implemented in python 3.8. Generalisability was 750 

assessed by using a stratified train-test sample (train: 894, control test sample: 646).  751 

Quantifying voxel-wise deviations from the reference normative model 752 

To estimate a pattern of regional deviations from typical brain function for each participant in 753 

the control test sample (n = 646, mean age: 25.45 ± 7.19 years, 52.16% female), we derived a 754 

normative probability map (NPM) that quantifies the voxel-wise deviation from the 755 

normative model. The subject-specific Z-score indicates the difference between the predicted 756 

activation and true activation scaled by the prediction variance. This was repeated for the 757 

clinical test sample (n = 482, 260 controls + 222 cases, mean age: 26.76 ± 10.94 years, 758 

54.97% female). We thresholded participant’s NPM at Z = ±2.6 (i.e., p < .00556) and summed 759 

the number of significantly deviating voxels for each participant. Kruskal-Wallis H-tests were 760 

used to test for group (cases or controls) and diagnosis effects and, when applicable, follow-761 

up Mann Whitney U-tests were False Discovery Rate (FDR)57 corrected at α = 0.05.  762 

 763 

Association of normative models and their outputs to individual differences and task 764 

variables 765 

Model Coefficients: To probe the magnitude of the influence of individual differences 766 

(sociodemographics) and task variables on the predicted brain activation, we examined both 767 

the regression coefficients and the structure coefficients (correlation coefficients) of all 768 

sociodemographic and task variables input variables (for list of variables see ‘Generating 769 

Normative Models for BOLD signal in CS+ > CS- contrast’). Structure coefficients are 770 

preferable to regression coefficients when variables are collinear58. Note that negative R^2 771 

values (“negative” explained variance) is a possible outcome when the model fails to 772 

generalize effectively to new data, despite in-sample performance yielding non-negative 773 

explained variance (which is always positive or zero by construction). This phenomenon is 774 

not uncommon and arises when the model's predictions result in a residual sum of squares 775 

that exceeds the variance of the true values.  776 
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Linear Regression (Elastic Net) and Support Vector Classification (SVC): We applied an 777 

elastic net linear regression as implemented in the scikit-learn package (version 1.0.2)59 with 778 

10 repeats of nested 5-fold cross validation [alphas = 0.0001, 0.001, 0.01, 0.1, 0.3, 0.5, 0.7, 1; 779 

90% train, 10% test split] to predict trait anxiety as measured by the STAI-T (n = 751), or 780 

depressive symptoms as measured by the BDI (n = 440) from participants’ whole brain 781 

(unthresholded) deviation maps. The mean coefficient values and the frequency of the 782 

voxel’s contribution (in other words, how many of the cross-folds split found this voxel to be 783 

important) indicate which voxel contributed to the prediction. The statistical significance of 784 

these results was tested against a 1000-fold nested 5-fold test for each variable. To classify 785 

participants (n = 703) who were contingency aware from those who were not based on their 786 

unthresholded whole-brain deviation maps, we used an SVC model with a linear kernel, 787 

regularisation parameter set to 1.0, and balanced class weights as implemented in the scikit-788 

learn package (version 1.0.2).  789 

 790 

Quantifying differentiable patterns of deviations between cases and controls 791 

To classify individuals with anxiety-related or mood disorders and controls based on their 792 

whole brain unthresholded deviation maps, we used a SVC model with a linear kernel, 793 

regularisation parameter set to 1.0, as is common in neuroimaging, and balanced class 794 

weights (i.e. adjusted inversely proportional to class frequencies in the input data) as 795 

implemented in the scikit-learn package (version 1.0.2)59. The evaluation metric for the 796 

classification is area under the receiving operator curve (AUC) averaged across all folds 797 

within a 10-fold cross validation framework. 798 

Quantifying differentiable patterns of deviations among patient groups 799 

We used a one versus rest support vector classifier (SVC OvR) model as implemented in the 800 

scikit-learn package (sklearn.multiclass.OneVsRestClassifier version 1.0.2) to determine if 801 

there were quantifiably differentiable patterns within the whole brain unthresholded deviation 802 

maps among patient groups. Due to the small number of individuals with major depressive 803 

disorder (n = 11), specific phobia (n=7) and panic disorder (n=2), this analysis only included 804 

individuals with a diagnosis of PTSD (n=55), OCD (n=68), GAD (n=48) and SAD (n=31) 805 

(total n = 202). The model classes were the participants’ diagnosis. The evaluation metric for 806 

the classification was the F1-metric (the harmonic mean of precision and recall, also known 807 

as the balanced F-score, where values closer to 1 indicate greater classification success) per 808 
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class within a 5-fold cross-validation framework, and the statistical significance was tested 809 

against a 1000-fold nested 5-fold test. 810 

 811 

 812 

Data availability statement 813 

All results from this manuscript can be found at 814 

https://zenodo.org/uploads/13933681?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjU3OWVlMGM5LWY815 

5ZmUtNDVhOC04MDM0LTgxMGFjZmJjNjgzMSIsImRhdGEiOnt9LCJyYW5kb20iOiIwNWY1ZDZhYjZjYjJ816 

mMTFhOWRjYzdkMjZiZjgxYjk2NyJ9.CNDyT7ldr7R_418i6oIkAaOUKrpTvQFuKlfSQ_qm6gZEkytRKPmHt817 

AZWUWhB3ModXWa59-ehNegQERcnTimwJw 818 

The ENIGMA-Fear Conditioning Group (part of the ENIGMA-Anxiety Working Group29 is 819 

open to sharing the individual-level data (HALFIPE results files) from this investigation to 820 

researchers for secondary data analysis. To request access to data, an analysis plan can be 821 

submitted to the ENIGMA-Anxiety Working Group 822 

(http://enigma.ini.usc.edu/ongoing/enigma-anxiety/). Data access is contingent on approval 823 

by PIs from contributing samples.  824 
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Code availability statement 826 

All code to reproduce the analyses in this manuscript is available at: 827 

https://github.com/Hannah-Savage/Fear_Conditioning_MegaAnalysis_NormModelling. 828 

The functions needed to conduct the mega-analysis are also included in the ‘combat.enigma’ 829 

R package. 830 
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     Table 1. Descriptive statistics for all samples (N=43) included in the analyses.        

               

Sample Country N 
     Sex  

(%females) 
Healthy Controls (n) 

Patients  

(n) 

Age  

M (SD) 

Years of education  

M (SD) 

Amsterdam_Visser/Kindt__sample_1 NL 18 72 18 0 22.06 (3.35) NA 

Amsterdam_Visser/Kindt__sample_2 NL 41 73 41 0 20.56 (1.79) NA 

Amsterdam_Visser/Kindt__sample_3 NL 12 75 12 0 21 (1.35) NA 

Amsterdam_Visser/Kindt__sample_4 NL 10 80 10 0 22.8 (2.04) NA 

Amsterdam_Visser/Kindt__sample_5 NL 13 85 13 0 22.23 (4.07) NA 

Amsterdam_Visser/Kindt__sample_6 NL 14 79 14 0 23.43 (2.71) NA 

Amsterdam_Visser/Kindt__sample_7 NL 16 44 16 0 24.06 (3.36) NA 

Amsterdam_Visser/Kindt__sample_8 NL 9 100 9 0 20.33 (1.41) NA 

Amsterdam_Visser/Kindt__sample_9 NL 38 58 38 0 23.66 (3.78) NA 

Austin_Cisler US 61 100 0 61 33.72 (8.48) 15.46 (2.64) 

Barcelona_Cardoner SP 71 66 45 26 22.66 (4.67) 14.49 (2.15) 

Barcelona_Soriano_sample_1 SP 35 51 17 18 37.43 (10.54) 14.69 (3.72) 

Barcelona_Soriano_sample_2 SP 147 50 122 25 24.76 (4.22) 18.63 (3.95) 

Bielefeld_Lonsdorf_sample_1 GE 116 66 116 0 24.61 (3.61) 15.26 (2.14) 

Bielefeld_Lonsdorf_sample_2 GE 80 56 80 0 24.88 (3.51) NA 

Bielefeld_Lonsdorf_sample_3 GE 28 64 28 0 24.68 (4.95) 13.36 (1.75) 

Bochum_Elsenbruch GE 29 48 29 0 26.45 (3.59) 17.45 (4.02) 

Bochum_Merz_sample_1 GE 59 49 59 0 23.88 (4.17) 16.07 (3.4) 
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Bochum_Merz_sample_2 GE 59 47 59 0 24.39 (3.83) 15.86 (3.72) 

Bochum_Merz_sample_3 GE 47 49 47 0 22.87 (2.61) NA 

Bochum_Merz_sample_4 GE 29 0 29 0 24.21 (3.62) NA 

Bochum_Merz_sample_5 GE 31 0 31 0 24.71 (3.87) NA 

Bochum_Merz_sample_6 GE 60 50 60 0 23.57 (2.95) NA 

Columbia_Neria US 95 46 65 30 35.65 (12.26) 15.11 (2.45) 

Duke_LaBar_sample_1 US 38 47 38 0 24.68 (4.2) NA 

Duke_LaBar_sample_2 US 37 49 37 0 29.16 (11.07) NA 

Florida_Keil US 14 36 14 0 19.79 (2.08) 14 (0) 

Harvard_McLaughlin US 89 55 75 14 13.06 (2.6) 7.04 (2.32) 

Manitoba_Greening_sample_1 CA 13 38 13 0 24 (5.07) 17.15 (3.02) 

Manitoba_Greening_sample_2 CA 31 55 31 0 24.23 (4.56) NA 

Melbourne_Harrison AU 112 61 75 37 20.88 (2.34) 15.02 (2.21) 

Munich_Koch GE 45 56 23 22 34.47 (12.39) NA 

Munster_Moeck_sample_1 GE 42 69 42 0 26.02 (6.22) 12.33 (1.37) 

Munster_Moeck_sample_2 GE 29 52 29 0 15.79 (0.98) 10.64 (0.99) 

Reading_Reekum_sample_1 UK 21 57 21 0 24 (2.59) NA 

Reading_Reekum_sample_2 UK 50 60 50 0 17.8 (3.46) 11.34 (1.82) 

MGH_Tuominen_sample_1 US 14 0 14 0 36.36 (9.61) 15.69 (1.84) 

MGH_Tuominen_sample_2 US 37 43 37 0 28.51 (5.81) 17.08 (2.27) 
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USP_Diniz BR 55 58 27 28 35.56 (10.97) 13.13 (4.1) 

Texas_Dunsmoor US 45 64 23 22 23.47 (4.51) NA 

Ulm_Abler GE 50 0 50 0 22.6 (2.92) NA 

Uppshala_Ahs SW 278 58 278 0 33.87 (10) 14.16 (1.65) 

Vanderbilt_Kaczkurkin US 81 0 53 28 33.47 (9.7) 15.74 (2.18) 

Total n/Mean (SD)/Range  2199 52.69 1888 311 25.26 (5.47) | 8-66 14.53 (2.56) | 1-26 

 
AU, Australia; BR, Brazil; CA, Canada; GE, Germany; NA, Not available; NL, The Netherlands; SP, Spain; SW, Sweden; UK, United Kingdom, US, United 

States. Note: To be included in the normative modelling analysis each participant had to have all essential data (age, sex) available, samples had to have 

control participants and larger samples required both genders available. These reasons lead to the exclusion of the entire Austin_Cisler and 

Vanderbilt_Kaczkurkin datasets, as well as 7 additional participants. The Bielefeld_Lonsdorf_sample_3 was not approved for inclusion in the normative 

modelling analysis. Thus, a total of 177 fewer participants were included in the normative modelling analysis. 
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Table 2. Characteristics of the fear conditioning tasks for each sample.  

 

Sample 

CS+/

CS- 

(n/n) 

CS+ 

trials 

(n) 

CS- 

trials 

(n) 

Average 

ITI (s) 

Average 

ISI (s) 

Reinf. 

rate 

(%) 

CS type 
Type of 

US 

US 

confound 

Assessment 

of awareness 

Preconditioning 

phase 

Amsterdam_Visser/Kindt__sample_1 2/2 22 22 22000 6000 55 

Neutral 

faces & 

pictures 

Electric 

shock 
no yes yes 

Amsterdam_Visser/Kindt__sample_2 2/2 22 22 20000 4000 55 

Neutral 

faces & 

pictures 

Electric 

shock 
no yes yes 

Amsterdam_Visser/Kindt__sample_3 2/2 18 18 17500 4000 56 

Neutral 

faces & 

pictures 

Electric 

shock 
no yes yes 

Amsterdam_Visser/Kindt__sample_4 2/2 18 18 17500 4000 56 

Neutral 

faces & 

pictures 

Electric 

shock 
no yes yes 

Amsterdam_Visser/Kindt__sample_5 2/2 18 18 10350 4000 56 

Neutral 

faces & 

pictures 

Electric 

shock 
no yes yes 

Amsterdam_Visser/Kindt__sample_6 2/2 18 18 10350 4000 56 

Neutral 

faces & 

pictures 

Electric 

shock 
no yes yes 

Amsterdam_Visser/Kindt__sample_7 2/2 18 18 4650 4000 56 

Neutral 

faces & 

pictures 

Electric 

shock 
no yes yes 

Amsterdam_Visser/Kindt__sample_8 2/2 18 18 17500 4000 56 

Neutral 

faces & 

pictures 

Electric 

shock 
no yes yes 

Amsterdam_Visser/Kindt__sample_9 2/2 22 22 20000 4000 55 

Neutral 

faces & 

pictures 

Electric 

shock 
no yes yes 

Austin_Cisler 1/1 18 18 4000 2500 50 
Neutral 

pictures 

Electric 

shock 
no yes yes 
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Barcelona_Cardoner 1/1 32 32 5891 1900 50 
Neutral 

pictures 

Auditory 

stimulus 
no yes yes 

Barcelona_Soriano_sample_1 2/1 16 16 15000 5800 62.5 
Neutral 

pictures 

Electric 

shock 
yes yes yes 

Barcelona_Soriano_sample_2 1/1 15 10 12000 1750 33 
Neutral 

pictures 

Electric 

shock 
no yes yes 

Bielefeld_Lonsdorf_sample_1 1/1 14 14 13000 6800 100 
Neutral 

pictures 

Electric 

shock 
yes yes yes 

Bielefeld_Lonsdorf_sample_2 1/1 14 14 13000 7000 100 
Neutral 

pictures 

Electric 

shock 
yes no yes 

Bielefeld_Lonsdorf_sample_3 2/2 18 18 10000 7000 100 
Grey 

fractals 

Electric 

shock 
yes yes yes 

Bochum_Elsenbruch 1/1 8 8 25000 9000 100 
Neutral 

pictures 
Other* yes yes no 

Bochum_Merz_sample_1 2/1 16 8 10750 8000 62.5 
Neutral 

pictures 

Electric 

shock 
no yes no 

Bochum_Merz_sample_2 2/1 16 8 10750 8000 62.5 
Neutral 

pictures 

Electric 

shock 
no yes no 

Bochum_Merz_sample_3 1/1 21 21 12000 8000 100 
Neutral 

pictures 

Electric 

shock 
yes yes no 

Bochum_Merz_sample_4 2/1 16 8 10062 6000 62.5 
Neutral 

pictures 

Electric 

shock 
no yes no 

Bochum_Merz_sample_5 1/1 16 16 10750 8000 62.5 
Neutral 

pictures 

Electric 

shock 
no yes no 
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Bochum_Merz_sample_6 2/1 16 8 10062 6000 62.5 
Neutral 

pictures 

Electric 

shock 
no yes no 

Columbia_Neria 1/2 15 30 3600 4000 80 
Neutral 

pictures 

Electric 

shock 
yes no yes 

Duke_LaBar_sample_1 2/2 20 20 5750 6000 50 

Avatars with 

neutral 

faces 

Electric 

shock 
yes no yes 

Duke_LaBar_sample_2 1/1 16 16 15900 4000 31 
VR affective 

pictures 

Electric 

shock 
yes no yes 

Florida_Keil 1/1 29 20 7000 5100 25 
Gabor 

patches 

Electric 

shock 
yes yes yes 

Harvard_McLaughlin 1/1 8 4 20000 1500 40 
Neutral 

pictures 

Auditory 

stimulus 
no no no 

Manitoba_Greening_sample_1 1/1 24 24 12000 6000 50 
Gabor 

patches 

Electric 

shock 
no no yes 

Manitoba_Greening_sample_2 1/1 24 24 12000 3995 50 
Gabor 

patches 

Electric 

shock 
no no yes 

Melbourne_Harrison 1/1 15 10 12000 1950 33 
Neutral 

pictures 

Auditory 

stimulus 
no yes yes 

Munich_Koch 1/1 8 8 12000 12000 50 

Affective 

faces and 

pictures 

Electric 

shock 
yes no no 

Munster_Moeck_sample_1 1/1 27 27 5750 300 33 
Neutral 

faces 

Auditory 

stimulus 
no yes yes 

Munster_Moeck_sample_2 1/1 27 27 5750 300 33 
Neutral 

faces 

Auditory 

stimulus 
no yes yes 
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Reading_Reekum_sample_1 1/1 12 12 10530 500 100 
Neutral 

pictures 

Auditory 

stimulus 
yes no no 

Reading_Reekum_sample_2 1/1 12 12 10530 500 100 
Neutral 

pictures 

Auditory 

stimulus 
yes no no 

MGH_Tuominen_sample_1 2/1 16 16 15000 6000 62.5 
Neutral 

pictures 

Electric 

shock 
yes no no 

MGH_Tuominen_sample_2 1/1 8 8 15000 6000 62.5 
Neutral 

faces 

Electric 

shock 
yes no no 

USP_Diniz 2/1 16 16 15000 3000 62.5 
Neutral 

pictures 

Electric 

shock 
yes yes no 

Texas_Dunsmoor 1/1 24 24 6000 5000 50 Other** 
Electric 

shock 
yes no no 

Ulm_Abler 2/1 80 20 variable 2500 50 
Neutral 

pictures 

Thermal 

stimulus 
no no no 

Uppshala_Ahs 1/1 16 16 14000 6000 50 
Humanoid 

characters 

Electric 

shock 
yes yes yes 

Vanderbilt_Kaczkurkin 2/1 15 30 3600 3900 80 
Neutral 

pictures 

Electric 

shock 
yes yes yes 

 

CS, conditioned stimulus; CS+, CS followed by unconditioned stimulus; CS −, CS not followed by unconditioned stimulus; CS+/CS-, Number of different 

CS+ and CS-; ITI, intertrial interval; ISI, inter-stimulus interval; Reinf., Reinforcement, US=Unconditioned stimulus. All samples used visual conditioned 

stimuli. All samples included an independent assessment of conditioning (e.g., skin conductance responses) except Amsterdam_Visser/Kindt__1. For all 

samples, the fMRI contrast (CS+ > CS-) included either all CS+ trials (with US present) or all CS+ trials without the US, along with all CS- trials. Exceptions 

included Barcelona_Cardoner, Duke_LaBar_sample_1, and Duke_LaBar_sample_2, which only included trials from an early conditioning phase (n = 

4CS+/4CS-, 5CS+/5CS-, and 8CS+/8CS- trials, respectively). *Rectal distension. ** Typical exemplars.    
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Table 3. Characteristics of individuals with anxiety-related and depressive disorders included in the analyses.      

     

 

Sample N Age M (SD) 
Females 

(%) 

Medication 

(%) 
Comorbidity (%) 

GAD 

(n) 

MDD 

(n) 

OCD 

(n) 

PTSD 

(n) 

SAD 

(n) 

PD 

(n) 

SP 

(n) 

Austin_Cisler 61 33.72 (8.48) 100 59.02 67.21 0 0 0 61 0 0 0 

Barcelona_Cardoner 26 23.88 (4.78) 61.54 3.85 11.54 26 0 0 0 0 0 0 

Barcelona_Soriano_sample_1 18 40.56 (11.91) 61.11 88.89 50 0 0 18 0 0 0 0 

Barcelona_Soriano_sample_2 25 25.56 (3.68) 64 0 16 21 0 0 0 4 0 0 

Columbia_Neria 30 35.07 (13.82) 33.33 0 80 0 0 0 30 0 0 0 

Harvard_McLaughlin 14 14.57 (2.14) 50 0 0 1 0 0 3 1 2 7 

Melbourne_Harrison 37 19.89 (2.31) 51.35 0 56.76 0 11 0 0 26 0 0 

Munich_Koch 22 33.55 (13.59) 59.09 54.55 27.27 0 0 22 0 0 0 0 

USP_Diniz 28 33.68 (8.09) 53.57 0 71.43 0 0 28 0 0 0 0 

Texas_Dunsmoor 22 25.95 (5.04) 68.18 NA 0 0 0 0 22 0 0 0 

Vanderbilt_Kaczkurkin 28 34.57 (9.36) 0 3.57 32.14 0 3 0 25 0 0 0 

Total n/M 
31

1 
29.91 (10.75) 58.84 21.22 44.05 48 14 68 141 31 2 7 

        
Data refer to primary mental health diagnoses. "‘Comorbidity’ refers to the presence of at least one additional mental disorder. Data on comorbidity were not 

included in the analyses. GAD=Generalized Anxiety Disorder, MDD=Major Depressive Disorder, NA=Not available, OCD=Obsessive-Compulsive Disorder, 

PD=Panic Disorder; PTSD=Post-traumatic Stress Disorder, SAD=Social Anxiety Disorder; SP=Specific Phobia.      
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Figure 1. Neural correlates and individual-level heterogeneity in human fear conditioning. Schematic indicating the levels 

of analysis (a). Significant brain functional activation (b) and deactivation (c) to the CS+ versus CS− determined by mega-

analysis (n=1888 healthy controls). Schematic of normative modelling framework (d). Normative probability maps illustrate the 

percentage of participants in the healthy control test sample who had positive (hot colours -right) or negative deviations (cool 

colours - left) >±2.6 within each voxel. Circle highlights frequent large deviations (both positive and negative) within the most 

ventral region of the vmPFC (e). Abbreviations: AIC, anterior insular cortex; AG, angular gyrus; CN, caudate nucleus; dACC, 

dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; dPFC, dorsal prefrontal cortex; dPons, dorsal pons; 

dPrec, dorsal precuneus; Hipp, hippocampus; HYP, hypothalamus; lOFC, lateral orbitofrontal cortex; PCC, posterior cingulate 

cortex; SI, primary somatosensory cortex; SII, secondary somatosensory cortex; SMA, supplementary motor area; TG, 

temporal gyrus; Thal, thalamus; vmPFC, ventromedial prefrontal cortex. 
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Figure 2. Robust influence of task variables on brain activation during fear conditioning. Maps show the influence of pre-

task instructions about CS-US contingency (a), type of US (b), number of CS used in paradigm (i.e. multiple CS+ or CS- or 

single CS+ or CS-) (c), reinforcement rate (d), and potential US confounding in CS+ > CS- contrast (e) on mean activation (left; 

mega-analysis linear mixed-effects models) and relation to predicted activation (right; normative model structure coefficients). 

Structure coefficient maps show the correlation coefficients (rho) thresholded by their respective coefficients of determination 

(rho2 > 0.3) of selected task variables. This can be interpreted as showing how predicted activation to the CS+ > CS- contrast 

relates to the task variables included in the building of the normative models. Positive correlations (warm colours) indicate 

greater activation for higher values of the input variable and negative correlations (cool colours) greater activation for lower 

values of the input variable (note that some variables are dummy coded, e.g. pre-task instructions, type of US).CS=Conditioned 

Stimulus; US=Unconditioned Stimulus. For Reinforcement Rate (RR) in linear mixed-effects models, the figure shows 

significant results in the ANOVA comparing four categories (RR30, RR50, RR62, RR100). For the results of post-hoc tests, see 

Supplementary Figures S5 and S6.  
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Figure 3. Differences between individuals with anxiety-related and depressive disorders and healthy controls in 

human fear conditioning. Regions wherein individuals with anxiety-related and depressive disorders (n=311) (a) showed 

significantly increased functional activation to the CS+ versus CS−, as compared to healthy controls. Normative probability 

maps illustrate the percentage of participants of the sample (test controls - top; individuals with anxiety-related and depressive 

disorders - bottom) who had positive (hot colours - right) or negative deviations (cool colours - left) >±2.6 within each voxel (b). 

Box plots show frequency (median line) of the total number of large deviations (>±2.6) per clinical group. Whiskers show ±1.5 

times interquartile range (c). Normative probability maps illustrate the percentage of each clinical group who had positive (hot 

colours - right) or negative deviations (cool colours - left) >±2.6 within each voxel (d). Confusion matrix for multi-class support 

vector differentiating patterns of deviations among clinical groups (e). Abbreviations: GAD, Generalised Anxiety Disorder; OCD, 

Obsessive Compulsive Disorder; PTSD, Post-traumatic Stress Disorder; SAD, Social Anxiety Disorder. 
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Changes with respect to pre-registration  18 

As noted in the main text, both the mega-analysis (https://osf.io/7n953) and 19 

normative modeling analysis (https://osf.io/w74bt) were pre-registered. 20 

 21 

The following changes were made after pre-registration: 22 

1. At the time of pre-registration, we had collected data from 43 samples. We 23 

excluded one sample (n=22) because it employed a “multi-CS” conditioning 24 

paradigm (36 CS+, 18 CS-) which is difficult to compare with the other experiments 25 

included.  26 

2. For the mega-analysis, we used pre-scaling instead of Combat to reduce site-27 

related heterogeneity (see “Pre-scaling” in page 5).   28 

 29 

The normative modelling analysis plan was updated to best complement the meta-30 

analysis approach and thus the following changes were made after pre-registration:  31 

1. Sample size. The participants included were a subset of the final sample used in 32 

the meta-analysis, for whom all required data were available. 33 

2. Variables included. The variables used were matched to those included in the 34 

mega-analysis study to facilitate a better comparison between the results of these 35 

complementary methods 36 

3. Analysis plan. Research question 1A. We chose not to create models for separate 37 

ROIs. Research question 1C. We did not perform whole-brain sparse canonical 38 

correlation analysis to determine how deviations in task activation predicted outcome 39 

measures, rather, we chose statistical approaches more appropriate to the type of 40 

data. We did not perform the analysis linking deviation scores to US aversiveness as 41 

this was not performed in the meta-analysis. Research question 2B. Again, we did 42 

not perform whole-brain sparse canonical correlation analysis, for the same reasons 43 

as mentioned above. We did not perform analyses on transdiagnostic scales with 44 

insufficient sample sizes (e.g., Beck Anxiety Inventory, Hamilton-Anxiety, Hamilton-45 

Depression) and similarly excluded small diagnostic groups from relevant analyses. 46 

We did not use a clustering method.    47 

  48 

 49 

 50 
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 52 

Variables collected and not included in analyses 53 

The following variables were collected but not included in the analyses because the 54 

data collected were insufficient, or too heterogeneous to be aggregated: IQ, 55 

comorbidity, ethnicity, and years of education. Descriptive data on years of education 56 

and comorbidity for the samples with available data are reported in Tables 1 and 3 of 57 

the main manuscript.   58 

 59 

 60 

Supplementary Methods 61 

 62 

Non-imaging data  63 

Harmonization of trait anxiety scores 64 

As noted in the main text, we conducted the analysis of the State-Trait Anxiety 65 

Inventory-Trait version (STAI-T) scores using both raw and harmonized scores.  66 

To harmonize the STAI-T scores, we took the following steps, we first assessed the 67 

potential variability of STAI-T scores across versions, languages, or countries, by 68 

conducting a meta-analysis of the mean STAI-T scores reported in the normative 69 

studies1–11  as well as a meta-analysis of the reported standard deviations. In both 70 

analyses, substantial heterogeneity between studies was observed (I2 statistic for the 71 

mean: 99%; I2 statistic for the standard deviation: 95%, Q test p<0.001 in both 72 

cases). This heterogeneity indicates significant differences in the reported means 73 

and standard deviations between studies. We then examined potential moderators of 74 

this heterogeneity, including the version of the STAI-T (X or Y), language, and 75 

country. The results revealed statistically significant differences in the mean and 76 

standard deviation across countries (p=0.014 and 0.001, respectively) and in the 77 

mean across languages (p=0.012) but not on the version of the STAI-T. 78 

 79 

 80 

 81 

 82 

 83 

 84 

 85 
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 86 

    Mean   Log SD   

    Estimate (95%CI) P Estimate (95%CI) P 

            

Version X 41.2 (36.9-45.4) n.s. 2.36 (2.31-2.41) n.s. 

  Y 39.2 (36.4-42.0)   2.22 (2.09-2.35)   

            

Language Dutch 35.2 (33.0-37.5) 0.012 2.23 (1.97-2.48) 0.353 

  English 38.0 (35.7-40.4)   2.17 (2.01-2.32)   

  French 41.9 (40.7-43.1)   2.15 (2.05-2.25)   

  German 43.0 (41.0-44.9)   2.39 (2.36-2.42)   

  Japanese 46.8 (44.6-49.1)   2.43 (2.29-2.57)   

  Spanish 46.2 (37.5-55.0)   2.32 (2.25-2.39)   

            

Country America 36.5 (33.9-39.1) 0.014 2.13 (1.88-2.39) 0.001 

  Australia 36.4 (35.8-37.0)   2.41 (2.37-2.45)   

  England 41.1 (36.1-46.2)   2.02 (1.79-2.25)   

  France 41.9 (40.7-43.1)   2.15 (2.05-2.25)   

  Germany 43.0 (41.0-44.9)   2.39 (2.36-2.42)   

  Japan 46.8 (44.6-49.1)   2.43 (2.29-2.57)   

  Netherlands 35.2 (33.0-37.5)   2.23 (1.97-2.48)   

  Spain 46.2 (37.5-55.0)   2.32 (2.25-2.39)   

            

 87 

These findings suggest that the observed heterogeneity in STAI-T scores is partly 88 

explained by country (or language) differences in the included studies. We could not 89 

separate the effects of “country” and “language” because each language 90 

corresponded to one country, except for English (which corresponded to America, 91 
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Australia, and England). However, given that “country” better explained the 92 

heterogeneity and that we expected cultural differences among English-speaking 93 

countries, we decided to harmonize STAI-T scores based on country (rather than 94 

language). The harmonization was conducted with ComBat for ENIGMA12 (see 95 

expanded code in the GitHub repository): 96 

 97 

i_controls = which(X$patient == 0) 98 

age_sex = cbind(X$age, X$sex) 99 

combat = combat_fit(X$stai[i_controls], 100 

                    site = X$country[i_controls], cov = age_sex[i_controls,], 101 

                    n.min = 8, impute_missing_cov = TRUE) 102 

X$stai  = combat_apply(combat, X$stai, site = X$country, cov = age_sex)$dat 103 

 104 

  105 

Quality control 106 

Three investigators (EV, HS, MAF) independently performed quality control of the 107 

non-imaging data and contacted the sites for additional information when necessary. 108 

 109 

Neuroimaging data 110 

Quality control  111 

Data were collected from 2448 participants. In addition to quality control using 112 

HALFpipe, which excluded 229 individuals (Sup. Table S3), two investigators (EV, 113 

HS) independently reviewed all neuroimaging data, which excluded 20 additional 114 

participants. Two of the included samples (Manitoba_Greening_sample_1 and 115 

Manitoba_Greening_sample_2) were analyzed in different runs. For these samples, 116 

we used the average of all runs to obtain the main contrast. One sample 117 

(Harvard_McLaughlin) was analyzed using blocks; due to the short interval-stimulus-118 

interval (ISI), individual events could not be reliably obtained. 119 

 120 

Statistical analyses. Mega-analyses 121 

Pre-scaling 122 

As noted in the main text, after processing with HALFpipe, we observed differences 123 

in the BOLD response between sites. Such variability exceeded the expected small 124 

normally distributed differences typically addressed by site-harmonizing mixed-125 
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effects models such as ComBat12. To remove these differences, we performed a pre-126 

scaling step that consisted of dividing the BOLD response of individuals from each 127 

site by their standard deviation. The use of such standardized scores is common in 128 

many areas of psychology and neuroscience. Specifically, for each voxel with brain 129 

coverage across all sites, we estimated the standard deviation using linear models 130 

with appropriate covariates (see below). We then calculated the median of the 131 

standard deviations across these voxels and divided all images in the sample by this 132 

standard deviation. We have included this step in the "combat.enigma" package12 in 133 

R for use by other groups. Following recommendations for between-site 134 

harmonization (see below), we estimated the standard deviations exclusively using 135 

data from healthy controls.  136 

 137 

A note about the use of z-statistics in mega-analyses 138 

HALFpipe generates “z-statistic images”, and one may (wrongly) assume that these 139 

z-statistic images are equivalent to z-scores. However, z-statistic images are 140 

calculated by dividing each participant´s mean BOLD response (to different trials) by 141 

its standard error rather than by the standard deviation across participants. Thus, 142 

critically, these z-statistic images mix the task-related BOLD response with its 143 

standard error. This is not inherently wrong, but it means that differences in z-144 

statistics between cases and controls may be due not only to differences in the task-145 

related BOLD response but also to differences in its standard error. 146 

These differences in standard error could be unrelated to the task, for 147 

example, due to differences in the amplitude of BOLD signal fluctuations. In the 148 

following R code, we simulated a study comparing the task-related BOLD response 149 

between cases and controls, with no actual differences in the task-related BOLD 150 

response but differences in its standard error. As expected, the t-tests comparing the 151 

groups show no differences in the task-related BOLD response. However, they do 152 

show statistically significant differences in within-subject z-scores.  153 

 154 

 155 

 156 
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# Create a task time-series design matrix 

design = rep(c(rep(0:1, 20), 0), each = 8) 

dat = NULL 

 

# For each group 

for (group in c("patient", "control")) { 

   

  # For each individual in the group 

  for (i in 1:30) { 

     

    # Simulate the BOLD signal with the same BOLD response but more noise 

    # in patients 

    ts = rnorm(length(design), design, ifelse(group == "patient", 1.2, 1)) 

     

    # Simplified analysis to estimate the task-related BOLD response 

    m = summary(lm(ts ~ design))$coefficients[2,] 

     

    # Save the individual task-related BOLD response and z-statistic 

    dat = rbind(dat, data.frame( 

      group, 

      bold_response = m[1], 

      z_statistic = m[1] / m[2] 

    )) 

  } 

} 

 

# Conduct t-tests to compare patients and controls 

t.test(dat$bold_response ~ dat$group) 

t.test(dat$z_statistic ~ dat$group) 

In other words, we do not know whether differences in z-statistics are related 157 

to differences in the task-related BOLD response or to differences in other aspects of 158 

the BOLD signal that may be unrelated to the task. Indeed, we examined whether 159 

cases (individuals with anxiety-related and depressive disorders) and controls in this 160 

study might have different standard errors of the fear conditioning-related BOLD 161 

response and found that they might. For each sample containing cases and controls, 162 

we calculated the standardized mean difference (Cohen's d) in standard error and then 163 

averaged d across the samples. At a descriptive level, using a threshold of d≥0.2, 164 

cases showed larger standard errors in the cerebellum, but smaller in the mid-165 

cingulum (see figure). 166 

 167 
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Linear mixed-effects models 168 

To fit the models, we created a new function that, for each voxel, performs the following 169 

steps:  170 

1) Assesses which participants and sites have information, taking into account the 171 

specific brain coverage of each individual fMRI scan;  172 

2) Detects and discards collinear or constant covariates, which can vary depending on 173 

the participants with information in that voxel; 174 

3) Fits a linear mixed-effects model using the "lme" function from the “nlme” R 175 

package13: 176 

m = lme(y ~ x, random = ~ 1 | sample) 177 

or a simple linear model if the participants are from only one sample: 178 

 m = lm(y ~ x) 179 

Where “m” is the model, “y” is the voxel value, “x” is a matrix with the variables of 180 

interest and covariates, and “site” is a random intercept. 181 

4) Tests the linear hypothesis if specified (e.g., for ANOVAs): 182 

linearHypothesis(m, hypothesis) 183 

where “m” is the model, and “hypothesis” is the hypothesis matrix. 184 

5) Saves the results, including maps of sigma (the standard deviation estimated in the 185 

model), the model coefficients, and z-statistics. We have included this function in the 186 

“combat.enigma” R package. 187 

We used cluster-based inference to correct for multiple testing. Specifically, we 188 

created clusters of voxels with Z≥3.1 and converted cluster sizes to cluster-wise p-189 

values using the Gaussian Random Field (GRF) theory, using the FSL utilities 190 

smoothest and cluster. 191 

 192 

 193 

 194 

 195 

 196 

197 
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Supplementary Results  198 

In the main text, we highlighted those variables with more robust effects (i.e., 199 

with at least moderate effect sizes in linear mixed-effects models and significant in 200 

normative modeling analyses). Here we present the remaining significant 201 

associations.  202 

 203 

Sociodemographic variables 204 

Older age was significantly associated with greater activation in the ventromedial 205 

prefrontal cortex and medial temporal gyrus, as well as significantly less activation in 206 

the anterior insula, pre-supplementary motor area extending to the dorsal anterior 207 

cingulate, dorsal caudate and bilateral supramarginal gyrus extending to the 208 

posterior insula. Female participants (n=973) showed greater activation across the 209 

visual cortex, and left medial/superior temporal gyrus than males (n=915). 210 

Regression coefficients from the normative models indicated a minimal effect of age 211 

on the predicted BOLD signal, but unthresholded effects largely replicated the 212 

findings of the mega-analysis. Structure coefficients from the normative models 213 

showed minimal relation between sex and predicted BOLD signal, with only a very 214 

small cluster in the mid-anterior cerebellum predicted to show heightened activation 215 

in females. These results are presented in Sup. Figure S4.  216 

 217 

Task variables 218 

The following task variables showed significant albeit small/weak associations with 219 

brain activation during conditioning (see Sup. Figure S7 for the mega-analysis 220 

results and Sup. Figure S8 for the structure coefficients of the normative modeling 221 

results). Normative modelling regression coefficient maps are also shown in Sup. 222 

Figure S8 for completeness but are not discussed below. 223 

The number of trials during preconditioning showed a significant positive 224 

association with activation in the inferior cerebellum in the mega-analysis. Structure 225 

coefficients did not show a relationship between the number of trials during 226 

preconditioning and predicted BOLD signal. 227 

Average intertrial-interval (ITI) length demonstrated a significant positive 228 

association with activation within the bilateral primary visual cortex and a significant 229 

negative association with the bilateral posterior parietal cortex, and superior frontal 230 
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gyri extending to the supplementary motor area. Structure coefficients showed that 231 

increased average ITI was predictive of increased activation within the primary visual 232 

cortex, dorsomedial prefrontal cortex, extending to the pre SMA, the bilateral 233 

thalamus, caudate and putamen, the brainstem, and the anterior and medial 234 

cerebellum. Conversely, a longer ITI predicted less activation (i.e., more 235 

deactivation) within an expanse of the ventromedial prefrontal cortex, within the 236 

dorsolateral prefrontal cortex, S1, the precuneus, the lingual gyrus and fusiform face 237 

area extending into bilateral middle gyri of the temporal lobe, and bilateral 238 

hippocampus. 239 

For the main results on type of US, please refer to the main text. In addition to 240 

these main results, in normative modeling analyses, the use of a thermal stimuli as 241 

US was predictive of decreased activation within the bilateral amygdala, the mid-242 

cingulate cortex extending to the pre-supplementary motor area, the dorsomedial 243 

prefrontal cortex, a posterior region of the ventromedial prefrontal cortex, the cuneus, 244 

and (i.e., more deactivation) in the angular gyrus. The use of a visceral stimuli as US 245 

had no influence on predicted BOLD signal during CS+>CS-. These two variables 246 

were not investigated separately using linear models.  247 

In the mega-analysis, the type of CS (categorized as humanoid, affective 248 

pictures, and neutral faces) revealed significant effects. See full results at 249 

https://zenodo.org/uploads/13933681. In normative modeling analyses, the use of a 250 

humanoid CS was predictive of increased activation in the cingulate cortex, 251 

extending to the dorsomedial prefrontal cortex and pre-supplementary motor area, 252 

S2, dorsal precuneus, dorsolateral prefrontal cortex, the bilateral insula, the bilateral 253 

temporoparietal junction, the thalamus, the caudate and the left anterior cerebellum, 254 

as well as decreased activation (i.e. more deactivation) in the anterior ventromedial 255 

prefrontal cortex and posterior cingulate cortex. Moreover, the use of neutral pictures 256 

as CS predicted more activation (i.e. less deactivation) in the anterior ventromedial 257 

prefrontal cortex and posterior cingulate cortex, and less activation within the 258 

cingulate cortex, extending to the dorsomedial prefrontal cortex and pre-259 

supplementary motor area, dorsal precuneus, S2, the bilateral insula, the bilateral 260 

temporoparietal junction, the thalamus, the caudate and left anterior cerebellum 261 

Finally, the use of neutral faces as CS predicted more activation within the 262 

subgenual anterior cingulate cortex, and less activation within the bilateral fusiform 263 

https://zenodo.org/uploads/13933681
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face area and S2. The use of other types of CS (affective faces and pictures, a gabor 264 

patch, a neutral male avatar, images of animals or tools, or of snakes and spiders) 265 

did not have an influence on predicted BOLD signal.  266 

Being unaware of the relationship between CS and US (i.e., contingency 267 

unawareness; n=72) showed a positive association with activation in the ventral 268 

posterior cingulate extending to the dorsal anterior cingulate/precuneus compared 269 

with being aware (n=1260). As contingency awareness was not available for all 270 

participants this variable was not included in the construction of the normative 271 

models, and therefore their relationship to predicted task (de)activation cannot be 272 

assessed using structure coefficients. Rather, for participants in the two test samples 273 

(controls + individuals with an anxiety or mood-related disorder) with these data 274 

available (n = 703) we used a support vector classifier and found whole-brain 275 

deviation score could not be used to predict whether a participant was contingency 276 

aware or not (mean accuracy = 50% +/- 16%; p = 0.426; 10-fold cross validation; 277 

1000 permutations). 278 

In the mega-analysis, the number of CS+ included in the fMRI 279 

contrast showed a significant positive association with activation in the left primary 280 

visual cortex, right orbitofrontal cortex, right precuneus, right superior parietal lobule, 281 

and right dorsolateral prefrontal cortex.  Moreover, the number of CS- included in the 282 

fMRI contrast showed a significant positive association with activation in the left 283 

superior parietal lobule and the right dorsolateral prefrontal cortex. US aversiveness 284 

ratings showed a significant positive association with activation in the right primary 285 

visual cortex. Finally, the use of a preconditioning phase showed a negative 286 

association with activation in the right medial prefrontal cortex.  287 

 288 

 289 

 290 

 291 

 292 

 293 

  294 



12 

Supplementary Tables 295 

 296 

Supplementary Table S1. Descriptive statistics for STAI-T and BDI across samples. 297 

Sample 

STAI-T 

(n) 

STAI-T  

M (SD) 

STAI-T 

range 

BDI 

(n) 

BDI 

M (SD) 

BDI 

range 

Amsterdam_Visser_sample_1 18 35.33 (10.39) 22 - 59 NA NA NA 

Amsterdam_Visser_sample_2 41 34.66 (8.84) 22 - 53 NA NA NA 

Amsterdam_Visser_sample_3 12 32.67 (5.82) 23 - 44 NA NA NA 

Amsterdam_Visser_sample_4 10 35.3 (5.38) 29 - 46 NA NA NA 

Amsterdam_Visser_sample_5 13 37.46 (9.47) 26 - 60 NA NA NA 

Amsterdam_Visser_sample_6 14 35.29 (9.71) 21 - 58 NA NA NA 

Amsterdam_Visser_sample_7 16 33.5 (6.04) 25 - 46 NA NA NA 

Amsterdam_Visser_sample_8 9 36.44 (8.14) 27 - 52 NA NA NA 

Amsterdam_Visser_sample_9 38 35.03 (8.63) 20 - 52 NA NA NA 

Austin_Cisler NA NA NA 61 22.57 (12.51) 0 - 55 

Barcelona_Cardoner* 71 25.49 (13.49) 1 - 53 71 14 (11.87) 0 - 46 

Barcelona_Soriano_sample_2* 147 20.47 (10.73) 1 - 52 NA NA NA 

Bielefeld_Lonsdorf_sample_1 116 34.86 (7.36) 24 - 55 NA NA NA 

Bielefeld_Lonsdorf_sample_2 80 35.37 (10) 20 - 59 NA NA NA 

Bielefeld_Lonsdorf_sample_3 28 35.93 (6.96) 24 - 52 NA NA NA 

Bochum_Elsenbruch 29 33.03 (6.51) 21 - 44 NA NA NA 

Bochum_Merz_sample_5 31 33.32 (6.82) 20 - 52 NA NA NA 

Bochum_Merz_sample_6 60 36.2 (6.88) 23 - 52 NA NA NA 

Duke_LaBar_sample_1 38 32.39 (7.86) 21 - 53 NA NA NA 

Duke_LaBar_sample_2 37 33.28 (6.55) 20 - 48 NA NA NA 

Manitoba_Greening_sample_1 13 38.92 (9.3) 29 - 59 NA NA NA 

Manitoba_Greening_sample_2 31 35.27 (10.45) 21 - 57 NA NA NA 

Melbourne_Harrison 112 38.97 (13.05) 21 - 73 NA NA NA 

Munster_Moeck_sample_1 42 34.19 (7.3) 22 - 50 42 3.62 (4.36) 0 - 16 

Reading_Reekum_sample_1 21 41.62 (8.66) 27 - 59 NA NA NA 

Reading_Reekum_sample_2 50 42.92 (9.82) 26 - 75 NA NA NA 

Royal_Tuominen_sample_1 28 35.57 (13.83) 20 - 67 28 5.68 (7.98) 0 - 27 

Royal_Tuominen_sample_2 71 34.97 (10.33) 20 - 68 71 5.15 (6.48) 0 - 23 

USP_Diniz NA NA NA 25 20.4 (11.47) 0 - 44 
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Texas_Dunsmoor NA NA NA 45 15.68 (10.89) 0 - 41 

Ulm_Abler 50 33.38 (6.13) 23 - 52 NA NA NA 

Uppshala_Ahs 278 36.27 (11.44) 20 - 67 NA NA NA 

Vanderbilt_Kaczkurkin 82 43.38 (12.14) 21 - 70 82 12.38 (8.62) 0 - 31 

TOTAL 1586 34.45 (11.56) 1 - 75 425 12.41 (11.48) 0 - 55 

BDI: Beck Depression Inventory; NA: Not available: STAI-T: State Trait Anxiety 298 

Inventory-Trait version. *These samples used the Spanish version of the STAI-T 299 

(scores range from 0 to 60) 300 

 301 

 302 

 303 

 304 

 305 

 306 

 307 

 308 

 309 

 310 

 311 

 312 

 313 

 314 

 315 

 316 

 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 
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Supplementary Table S2. Patient's medications. 325 

 326 

Sample Medicated (n) 
SSRI or SNRI 

(n) 
BZD (n) Other* (n) 

Austin_Cisler 36 2 0 34 

Barcelona_Cardoner 1 0 1 0 

Barcelona_Soriano_sample_1 16 10 0 6 

Munich_Koch 12 7 0 5 

Vanderbilt_Kaczkurkin 1 1 0 0 

TOTAL 66 20 1 45 

 327 

SSRI: Selective Serotonin Reuptake Inhibitors; SNRI: Selective Noradrenaline 328 

Reuptake Inhibitors; BZD: Benzodiazepines. *Includes other medications or 329 

combinations of medications. 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

  342 
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Supplementary Table S3. Participants excluded after quality control (QC) 343 

Sample N collected  

N excluded 

after 

HALFpipe QC 

N excluded 

after manual 

QC 

N included 

in analysis 

Amsterdam_Visser_sample_1 19 0 1 18 

Amsterdam_Visser_sample_2 41 0 0 41 

Amsterdam_Visser_sample_3 12 0 0 12 

Amsterdam_Visser_sample_4 11 1 0 10 

Amsterdam_Visser_sample_5 13 0 0 13 

Amsterdam_Visser_sample_6 14 0 0 14 

Amsterdam_Visser_sample_7 16 0 0 16 

Amsterdam_Visser_sample_8 10 1 0 9 

Amsterdam_Visser_sample_9 38 0 0 38 

Austin_Cisler 88 27 0 61 

Barcelona_Cardoner 90 16 3 71 

Barcelona_Soriano_sample_1 37 2 0 35 

Barcelona_Soriano_sample_2 191 44 0 147 

Bielefeld_Lonsdorf_sample_1 120 4 0 116 

Bielefeld_Lonsdorf_sample_2 83 1 2 80 

Bielefeld_Lonsdorf_sample_3 32 4 0 28 

Bochum_Elsenbruch 30 1 0 29 

Bochum_Merz_sample_1 60 1 0 59 

Bochum_Merz_sample_2 60 1 0 59 

Bochum_Merz_sample_3 48 1 0 47 

Bochum_Merz_sample_4 33 4 0 29 

Bochum_Merz_sample_5 32 1 0 31 

Bochum_Merz_sample_6 64 4 0 60 

Columbia_Neria 114 15 4 95 

Duke_LaBar_sample_1 40 2 0 38 

Duke_LaBar_sample_2 40 3 0 37 

Florida_Keil 15 0 1 14 

Harvard_McLaughlin 95 6 0 89 

Manitoba_Greening_sample_1 13 0 0 13 

Manitoba_Greening_sample_2 31 0 0 31 

Melbourne_Harrison 154 40 2 112 

Munich_Koch 52 4 3 45 

Munster_Moeck_sample_1 44 2 0 42 

Munster_Moeck_sample_2 31 2 0 29 

Reading_Reekum_sample_1 22 1 0 21 

Reading_Reekum_sample_2 52 2 0 50 

Royal_Tuominen_sample_1 17 0 3 14 

Royal_Tuominen_sample_2 37 0 0 37 

Texas_Dunsmoor 48 3 0 45 
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Ulm_Abler 51 1 0 50 

Uppsala_Ahs 306 28 0 278 

USP_Diniz 56 1 0 55 

Vanderbilt_Kaczkurkin 88 6 1 81 

TOTAL 2448 229 20 2199 

 344 

 345 

 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 
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Supplementary Figures 367 

 368 

 369 

 370 

 371 

Supplementary Figure S1. Significant brain activation (hot colours) and 372 

deactivation (cool colours) to the CS+ versus CS- across axial (a; Z = -68 to 106), 373 

sagittal (b; X = -86 to 88) and coronal (c; Y = -120 to 86) slices (n=1888 controls).  374 

 375 
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 376 

 377 

Supplementary Figure S2. Evaluation metrics of normative models. Explained 378 

variance (a), skew (b), kurtosis (c), and Standardized Mean Squared Error (SMSE) 379 

(d) for control test (n = 646 controls - left, pink) and clinical test (n = 260 controls + 380 

222 individuals with anxiety-related or depressive disorders). 381 

 382 
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 383 

 384 

Supplementary Figure S3. Normative probability maps illustrate the number of 385 

participants in the sample (test controls - top; individuals with anxiety-related or 386 

depressive disorders (AMD) - bottom) who had positive (hot colours - right) or 387 

negative deviations (cool colours - left) >±2.6 within each voxel. 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 
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 404 

 405 

 406 

Supplementary Figure S4. Association of age and sex with brain (de)activation 407 

during fear conditioning. Results from linear mixed-effect models and normative 408 

modeling. For normative modeling, maps show the regression coefficient or structure 409 

coefficients (rho) from normative models for each task variable, thresholded by their 410 

respective coefficients of determination (rho^2 > 0.3). Positive correlations (warm 411 

colours) indicate greater activation for higher values of the input variable and 412 

negative correlations (cool colours) greater activation for lower values of the input 413 

variable.  414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

                            426 



21 

 427 

 428 

 429 

Supplementary Figure S5: Differences in brain activation between different 430 

reinforcement rates (including participants with potential US confounding 431 

effect). RR30 (n=268); RR50 (n=501); RR62 (n=333); RR100 (n=371). 432 

RR=reinforcement rate. Results of pairwise comparisons after significant ANOVAs. 433 

Asterisks indicate significant differences between groups with Bonferroni correction 434 

(*p<.05, **p<.01; ***p<.001). Dashed blue lines indicate mean brain activation for 435 

healthy controls. Error bars represent standard errors 436 

 437 

 438 

 439 
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 440 

 441 

 442 

Supplementary Figure S6: Differences in brain activation between different 443 

reinforcement rates (excluding participants with potential US confounding 444 

effect). RR30 (n=268); RR50 (n=139); RR62 (n=238). RR=reinforcement rate. 445 

Results of pairwise comparisons after significant ANOVAs. Asterisks indicate 446 

significant differences between groups with Bonferroni correction (*p<.05, **p<.01; 447 

***p<.001). Dashed blue lines indicate mean brain activation for healthy controls. 448 

Error bars represent standard errors.  449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 
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 459 

Supplementary Figure S7. Influence of task variables on brain activation during 460 

fear conditioning. Results from linear mixed-effect models for task variables not 461 

presented in the main text. CS+=Conditioned Stimulus followed by the 462 

Unconditioned Stimulus. ITI= Intertrial Interval. Number of CS+ in fMRI=Number of 463 

CS+ included in fMRI contrast. For type of CS, the figure shows significant results in 464 

the ANOVA comparing three categories (humanoid, affective pictures, and neutral 465 

faces).   466 
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 467 

 468 

Supplementary Figure S8. Influence of task variables on brain activation during 469 

fear conditioning. Results from normative models. Maps show the regression 470 

coefficient or structure coefficients (rho) from normative models for each task 471 

variable, thresholded by their respective coefficients of determination (rho^2 > 0.3). 472 

Positive correlations (warm colours) indicate greater activation for higher values of 473 

the input variable and negative correlations (cool colours) greater activation for lower 474 

values of the input variable (note that some variables are dummy coded, e.g., 475 

instructions, type of US stimuli). CS=Conditioned Stimulus; US=Unconditioned 476 

Stimulus. Any task-related variable maps not shown in the main text or in this table 477 

did not contain any voxels exceeding the threshold (i.e., they were empty maps).  478 
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 479 

 480 

 481 

Supplementary Figure S9: Differences in brain activation between individuals with 482 

anxiety-related disorders (n=297) and healthy controls (n=1888). 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 

 496 
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 497 

Supplementary Figure S10: Differences in brain activation between unmedicated 498 

individuals with anxiety or mood-related disorders (n=207) and healthy controls 499 

(n=1859). 500 

 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 



27 

 511 

Supplementary Figure S11: Differences in brain activation between patient 512 

groups. PTSD=post-traumatic stress disorder; OCD=obsessive-compulsive 513 

disorder; GAD=generalized anxiety disorder; SAD=social anxiety disorder. Results of 514 

pairwise comparisons after significant ANOVAs. Asterisks indicate significant 515 

differences between groups with Bonferroni correction (*p<.05, **p<.01; ***p<.001). 516 

Dashed blue lines indicate mean brain activation for healthy controls. Dashed blue 517 

lines indicate mean brain activation for healthy controls. Error bars represent 518 

standard errors.   519 
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 520 

 521 

 522 

 523 

 524 

 525 

 526 

Supplementary Figure S12: Mean coefficient weights from multi-class support 527 

vector classifier, used to differentiate whole-brain unthresholded deviation maps 528 

between patient groups. Yellow indicates voxels that had a mean coefficient weight > 529 

0.001 in all cross-folds (i.e. were frequently used to inform classification).  530 
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