- 2

Neural Correlates of Human Fear Conditioning and Sources of Variability: An fMRI Mega-Analysis and Normative Modelling Study of 2,199 Individuals

5 6

7 Joaquim Radua^{1 2 3} *, Hannah S. Savage^{4 5 6} *, Enric Vilajosana¹, Alec Jamieson⁷, Birgit Abler⁸, Fredrik Åhs⁹, Tom Beckers¹⁰, Narcís Cardoner^{3 11}, Josh Cisler, Juliana B. Diniz¹², Dominik R. 8 9 Bach¹³¹⁴¹⁵, Sigrid Elsenbruch¹⁶, Steve Greening¹⁷, Daphne J. Holt¹⁸¹⁹²⁰, Antonia N. Kaczkurkin²¹, Andreas Keil²², Merel Kindt²³, Kathrin Koch^{24 25}, Kevin S. LaBar²⁶, Charlene L. Lam^{27 28}, Christine 10 Larson²⁹, Tina B. Lonsdorf^{30 31}, Christian J. Merz³², Katie A. McLaughlin^{33 34}, Yuval Neria³⁵, Daniel 11 12 Pine³⁶, Carien van Reekum³⁷, Alexander Shackman³⁸, Carles Soriano-Mas^{3 39 40}, Victor I. Spoormaker⁴¹, Daniel M. Stout^{42 43 44}, Benjamin Straube^{45 46}, Thomas Straube⁴⁷, Lauri Tuominen⁴⁸, 13 Renee M. Visser²³, Laura Ahumada²², Volker Arolt^{49 50}, Marcelo C. Batistuzzo^{12 51}, Paulo R. Bazán⁵², 14 Emma E. Biggs¹⁰, Marta Cano^{3 53}, Pamela Chavarría-Elizondo^{39 54}, Samuel E. Cooper⁵⁵, Udo 15 16 Dannlowski⁴⁹, Víctor de la Peña-Arteaga^{39 56}, Stephanie N. DeCross³³, Katharina Domschke^{57 58}, Mana 17 R. Ehlers³⁰, John L. Graner²⁶, Alfons O. Hamm, Martin J. Herrmann⁵⁹, Ashley A. Huggins⁶⁰, Adriane 18 Icenhour¹⁶, Asier Juaneda-Seguí³⁹, Markus Junghoefer^{50 61}, Tilo Kircher^{45 46}, Katja Koelkebeck⁶², 19 Manuel Kuhn⁶³⁶⁴, Franziska Labrenz¹⁶, Shmuel M. Lissek⁶⁵, Martin Lotze⁶⁶, Ulrike Lueken⁵⁸⁶⁷, 20 Jürgen Margraf⁶⁸, Ignacio Martínez-Zalacaín^{39 69}, Robert Moeck⁴⁷, Jayne Morriss⁷⁰, María Ortuño¹, 21 Andre Pittig⁷¹, Daniel Porta-Casteras⁵⁶, Jan Richter^{72 73}, Isabelle C. Ridderbusch^{45 46}, Winfried Rief⁷⁴, Kati Roesmann^{61 75}, Jörgen Rosén⁷⁶, Alena N. Rußmann^{31 77}, Rachel Sjouwerman⁷⁸, Jennifer 22 23 Spohrs^{79 80}, Andreas Ströhle⁸¹, Benjamin Suarez-Jimenez^{82 83}, Martin Ulrich⁸, Hans-Ulrich Wittchen⁸⁴, Xi Zhu^{85 86}, Lea Waller⁸⁷, Henrik Walter^{58 88}, Paul M. Thompson⁸⁹, Janna Marie Bas-24 25 Hoogendam^{90 91 92}, Nynke A. Groenewold⁹³, Dan J. Stein⁹⁴, Nic J. Van der Wee^{91 92}, Joseph Dunsmoor⁹⁵ **, Andre F. Marquand^{4 5} **, Ben J. Harrison⁷ ** & Miquel A. Fullana^{1 96} ** 26

27

28

- 29 *Shared first authors
- 30 **Shared senior authors

Author for correspondence: Miquel A. Fullana. Institut d'Investigacions Biomèdiques
 August Pi i Sunyer (IDIBAPS), Barcelona, Spain & Psychiatry and Psychology Department,
 Institute of Neurosciences, Hospital Clinic. Barcelona, Spain. mafullana@clinic.cat

- ¹ Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ² University of Barcelona, Barcelona, Spain
- ³ Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain ⁴ Donders Institute of Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- ⁶ Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
 ⁶ Institute of Cognitive Neuroscience, UCL, London, UK

- Institute of Cognitive Neuroscience, UCL, London, UK
 Department of Psychiatry, The University of Melbourne, Victoria, Australia.
 Department of Psychiatry and Psychotherapy III, Ulm University Clinic, Ulm, Germany
 Department of Psychology and Social Work, Mid Sweden University, Östersund, Sweden
 Faculty of Psychology and Educational Sciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium

- ¹³ Sant Paul, Vol Psychology and Educational Sciences and Educer brain Institute (IBB-Sant Pau), Leuven, Beiguin
 ¹³ Sant Pau, Mental Health Group, Institut d'Investigació Biomèdica Sant Pau (IBB-Sant Pau), Hospital de la Sant Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Catalonia, Spain
 ¹² Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
 ¹³ University of Bonn, Transdisciplinary Research Area "Life and Health", Hertz Chair for Artificial Intelligence and Neuroscience, Institute of Computer Science, Medical Faculty, Institute of Experimental Epileptology and Cognition Research
- ¹⁴ University Hospital Bonn, Department of Psychiatry and Psychotherapy, Bonn, Germany
 ¹⁵ Department for Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, UK
 ¹⁶ Department of Medical Psychology and Medical Sociology, Medical Faculty, Ruhr University Bochum, Germany
 ¹⁷ Brain & Cognitive Sciences, Dept. of Psychology, University of Manitoba, Canada

- ¹⁷ Brain & Cognitive Sciences, Dept. or Psychology, University or managed, Garlade
 ¹⁸ Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
 ¹⁹ Harvard Medical School, Boston, MA, USA
- ¹⁰ Harvard Medical School, Boston, MA, USA
 ²⁰ Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
 ²¹ Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
 ²² Department of Psychology, University of Florida, Gainesville FL, 32611, USA
 ²³ University of Amsterdam, Amsterdam, The Netherlands
 ²⁴ Orbit Vanderbilt University of Dispersional Interventional Neuroradiology, Technical U.I.

- ²⁴ University of Amsterdam, Amsterdam, The Netherlands
 ²⁴ School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany
 ²⁶ School of Medicine and Health, TUM-NIC Neuroimaging Center, Technical University of Munich, Munich, Germany
 ²⁶ Center for Cognitive Neuroscience, Duke University, Durham, NC USA
 ²⁷ Laboratory of Clinical Psychology & Affective Neuroscience, Department of Psychology, University of Hong Kong, Hong Kong, China
 ²⁸ State Key Laboratory of Brain and Cognitive Sciences, Hong Kong, China

- University of Wisconsin-Milwaukee, Department of Psychology Biological Psychology and Cognitive Neuroscience, Bielefeld University, Bielefeld, Germany
- ³¹ Institute for Systems Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
 ³² Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
 ³³ Department of Psychology, Harvard University, Cambridge, MA USA
 ³⁴ Ballmer Institute for Children's Behavioral Health, University of Oregon

- ⁵⁴ Ballmer Institute for Children's Behavioral Health, University of Oregon
 ⁵⁵ Columbia University Irving Medical Center
 ⁵⁶ Section on Development and Affective Neuroscience, National Institute of Mental Health
 ⁵⁷ School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
 ⁵⁹ Department of Psychology, Neuroscience and Cognitive Science Program, and Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742 USA
 ⁵⁹ Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge IDIBELL, L'Hospitalet de Llobregat, Spain
 ⁴⁰ Department of Social Psychology and Quantitative Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Barcelona, Spain
 ⁴¹ Max Planck Institute of Psychiatry
 ⁴² University of California, San Diego

- ² University of California, San Diego ³ VA San Diego Healthcare System

- ⁴⁷ VA San Diego Healincare System
 ⁴⁷ Center of Excellence for Stress and Mental Health
 ⁴⁸ Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
 ⁴⁹ Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany.
 ⁴¹ Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany
 ⁴⁹ University of Ottawa Institute of Mental Health Research at the Royal

- ⁶⁰ Institute for Translational Psychiatry, University of Münster, Germany
 ⁶⁰ Otto-Creutzfeld-Center of Cognitive Neuroscience, University of Münster, Germany
 ⁶¹ Department of Methods and Techniques in Psychology, Pontifical Catholic University, São Paulo, SP, Brazil.
 ⁶² Radiology Institute, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 75, 05403-010, São Paulo, SP, Brazil;
- ⁵³ Sant Pau Mental Health Research Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain,
 ⁵⁴ Department of Clinical Sciences, School of Medicine, Universitat de Barcelona UB, L'Hospitalet de Llobregat, Spain
- ³⁶ Department of Psychiatry and Behavioral Sciences, University of Peaks at Austin
 ⁴⁶ Sant Pau Mental Health Research Group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
 ⁴⁷ Department of Psychiatry and Psychotherapy, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
 ⁴⁷ German Center of Mental Health (D2PG), partner site Berlin/Potsdam, 10177 Berlin, Germany
 ⁴⁹ Department of Psychology, University of Arizona, Tucson, AZ, USA
 ⁴⁰ Institute for Fiormany Berlin/Potsdam, University of Freiburg, Fr

- ⁴⁰ Department of Psychology, University of Arizona, Lucsvii, AZ, USA
 ⁴¹ Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany
 ⁴² Bielefeld University, Medical School and University Medical Center OWL, Protestant Hospital of the Bethel Foundation, Department of Psychiatry and Psychotherapy
 ⁴³ Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
 ⁴⁴ Department of Psychiatry, Harvard Medical School, Cambridge, MA, USA
 ⁴⁵ Department of Psychology, University of Minnesota, 55455, Minneapolis, MN, USA
 ⁴⁶ Discrete Padiology, University Medicine Greifswald, Gernany

- ⁶⁵ Department of Psychology, University of Minnesota, 55455, Minneapolis, MN, USA
 ⁶⁶ Diagnostic Radiology, University Medicine Greifswald, Gernany
 ⁶⁷ Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
 ⁶⁸ Mental Health Researech and Treatment Center, Ruhr-UNiversity Bochum (FBZ) and German Center for Mental Health (DZPG), partner site Bochum/Marburg
 ⁶⁹ Mental Health Researech and Treatment Center, Ruhr-UNiversity Bochum (FBZ) and German Center for Mental Health (DZPG), partner site Bochum/Marburg
 ⁶⁹ Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, Barcelona, 08907, Spain.
 ⁷⁰ School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
 ⁷¹ Translational Psychotherapy, Institute for Psychology, University of Göttingen, Göttingen, Germany.
 ⁷² Department of Experimental Psychopathology, University of Hildesheim, Hildesheim, Germany.
 ⁷³ Network Center for Biomedical Research on Mental Health (CIBERSAM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
 ⁷⁴ Div. of Clinical Psychology and Psychotherapy, University of Marburg, Germany.
 ⁷⁵ Institute of Psychology, Clinical Psychology in Childhood and Adolescence, University of Osnabrück, Germany.
 ⁷⁶ Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
 ⁷⁷ Department of Clinical Psychology and Neuroscience University of Hamburg, Germany.

- ⁴⁷ Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
 ⁴⁷ Department of Psychology, Clinical Psychology and Neuroscience, University of Hamburg, Hamburg, Germany
 ⁴⁸ Experimental Health Psychology, Maastricht University, Maastricht, The Netherlands
 ⁴⁹ Department of Child and Adolescent Psychiatry and Psychotherapy, Ulm University Medical Centre, Ulm, Germany
 ⁴⁰ Department of Psychiatry, Psychotherapy and Psychotraumatology Military Medical Centre, Ulm, Germany

- ⁸⁰ Department of Psychiatry, Psychotherapy and Psychotraumatology Military Medical Centre, Ulm, Germany
 ⁸¹ Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Charité Mitte, Berlin Germany
 ⁸² Department of Neuroscience, University of Rochester Medical Center, NY, USA
 ⁸⁴ Psychiatric University Hospital, Ludwig-Maximilians-University München, Germany
 ⁸⁵ Department of Psychiatry, Columbia University Ivring Medical Center, New York, NY, USA
 ⁸⁶ New York State Psychiatric Institute, New York, NY, USA
 ⁸⁷ Research Division of Mind and Brain, Department of Psychiatry and Neurosciences CCM, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
 ⁸⁶ Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, corporate Member of Freie Universität zu Berlin and Humboldt-Universität zu Berlin, 10177 Berlin, Germany
- ³⁹ Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA

- ⁸⁹ Inaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern Cairronna, Los Angeles, CA, USA
 ⁸⁰ Developmental and Educational Psychology, Institute of Psychology, Leiden University, Leiden, THe Netherlands
 ⁹¹ Leiden Insitute for Brain and Cognition, Leiden University Medical Center, The Netherlands
 ⁹² Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
 ⁹³ Department of Psychiatry & Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
 ⁹³ Department of Neuroscience in Mental Disorders, Dept of Psychiatry & Mental Health, Neuroscience Institute, University of Cape Town, South Africa
 ⁹⁴ Department of Neuroscience, University of Texas at Austin
 ⁹⁴ Adult Psychiatry and Psycholony Denartment Institute of Neurosciences. Hospital Clinic. Barcelona, Spain.
- ⁹⁶ Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clinic, Barcelona, Spain.

135	
136	
137	
138	ABSTRACT
139	We conducted a large analysis of the neural correlates of Pavlovian fear conditioning
140	acquisition and its sources of variability, using harmonised functional magnetic resonance
141	imaging (fMRI) data from 2,199 individuals in nine countries, including 1,888 healthy
142	controls and 311 individuals with anxiety-related and depressive disorders. Using mega-
143	analysis and normative modelling, we disentangled sources of variation across multiple
144	levels. Brain regions robustly linked to conditioning can be broadly described as belonging to

the "central autonomic–interoceptive" or "salience" network. Several specific task variables
(e.g., reinforcement rate) robustly modulated the responses of these regions during fear

147 conditioning. Additionally, brain activation during fear conditioning differed between healthy

148 individuals and those with anxiety-related and depressive disorders, both at the group level

and in the frequency of individual deviations identified through normative modelling. Finally,

150 distinct brain activation patterns also arose in individuals with post-traumatic stress disorder

151 and obsessive-compulsive disorder, extending previous findings in various domains.

152

153

155 Fear conditioning, also known as threat conditioning, is a psychological paradigm developed over a century ago to study associative learning mechanisms. It remains one of the most 156 157 widely used and productive experimental models for investigating both normal and pathological fear and anxiety in humans¹. Fear conditioning models how the association 158 159 between an initially neutral stimulus (conditioned stimulus, CS) and an innately aversive 160 stimulus (unconditioned stimulus, US) is learned. The success of learning in fear conditioning 161 is typically assessed by comparing responses to the fear cue (CS+, paired with the US) and 162 the safety cue (CS-, not paired with the US) across subjective, autonomic, or neural domains. 163 Successful conditioning is indicated by greater responses to the CS+ than to the $CS-^2$. In the brain, this involves activity changes within a "central autonomic-interoceptive" or "salience" 164 165 network, which in humans includes functionally and anatomically connected regions like the dorsal anterior cingulate cortex (dACC) and the anterior insular cortex (AIC)³. Additionally, 166 167 fear conditioning has been linked to decreased activity in regions like the ventromedial 168 prefrontal cortex (vmPFC), although such decreases have been less extensively studied³. Although the amygdala plays a crucial role in fear conditioning in rodents^{4–6}, and classical 169 lesion studies have implicated the amygdala in human fear conditioning⁷, this relationship has 170 not been consistently identified in human fMRI studies ^{3,8–12}. 171

172 Limitations in prior research on the neural correlates of human fear conditioning 173 include the use of small sample sizes (typically n < 30) and the reliance on heterogeneous 174 neuroimaging processing and analytical methods^{3,13}. While group-level meta-analyses can partially address the sample size issue³, individual-level *mega-analyses* offer additional 175 176 advantages. These include enhanced statistical power, more precise effect size estimation, 177 standardized preprocessing and analysis techniques, and substantially improved power to 178 detect whether activation is modulated by individual variability -one of the primary goals of 179 the current study $^{14-16}$.

180 Individual differences, such as sociodemographic factors (e.g., age) and trait variables 181 (e.g., trait anxiety), are likely to modulate the neural correlates of fear conditioning, 182 potentially affecting the generalizability of findings across groups, such as younger versus older adults or individuals with high versus low anxiety¹³. However, existing research on 183 184 individual differences has been inconsistent and often hampered by limited sample sizes 185 $(n < 50^{13})$ or sampling biases¹⁷. Moreover, task-specific variables, such as task instructions or 186 characteristics of the US, may also influence the neural correlates of conditioning¹³. For 187 example, compared to other USs, a tactile electric shock may elicit greater activation in the

188 dACC and the ventral supplementary motor area³. A primary challenge in this field is integrating prior data to accurately assess how individual differences and task variables affect 189 190 neural outcomes. This complexity arises from variations in adjustable factors and sampling 191 across studies and participants, highlighting the need for methods that can account for and 192 isolate specific sources of variation—such as the normative modeling approach used here. 193 Normative modeling integrates multiple smaller-scale studies into a common reference 194 space—a standardised baseline against which to benchmark individual variations. This 195 approach allows for meaningful comparisons across diverse studies by controlling for certain 196 sources of variation. As a result, the variance associated with specific variables and 197 individuals can be isolated, quantified, and systematically analysed¹⁸.

198 Fear conditioning has also been used to study the development and persistence of 199 mental health disorders marked by pathological fear, such as anxiety-related disorders^{1,19–22}, which are highly prevalent and rank among the leading causes of disability worldwide²². 200 201 However, there is ongoing debate over whether anxiety-related disorders consistently show 202 abnormal fear conditioning at behavioral or neural levels ^{23,24} or if these abnormalities are specific to certain clinical groups—such as post-traumatic stress disorder (PTSD²⁵) but not 203 others, like social anxiety disorder (SAD), where findings have been more inconsistent²⁶. 204 205 Inconsistencies maybe due in part to small sample sizes (ns<100 for anxiety-related disorders 206 as a group, ns < 25 for comparisons among clinical groups). Furthermore, most research in this 207 area has relied on case-control designs and traditional analysis techniques, both of which 208 have limitations that could be addressed through normative modeling. This framework 209 enables statistical inference for individual subjects relative to an expected population pattern, 210 providing a more detailed examination of the heterogeneity underlying group-level 211 analyses¹⁸.

212 In this study with pre-registered hypotheses and analyses (cf. Materials and 213 Methods), we used both mega-analysis and normative modelling to analyse individual-level, 214 harmonized fMRI data acquired during fear-conditioning from 43 samples from 21 215 laboratories across 9 countries (total n=2199), including both healthy participants and 216 individuals diagnosed with anxiety-related and depressive disorders. First, we assessed the 217 overall neural correlates of fear conditioning in healthy participants to provide a 218 comprehensive delineation of the brain regions underlying human fear conditioning. Based 219 on previous studies, we hypothesized that during fear conditioning, the CS+>CS- contrast 220 would be associated with robust activations in regions such as the dACC, AIC,

221 pre/supplementary motor areas, and dorsolateral prefrontal cortex (dlPFC), whereas the 222 CS+<CS- contrast would be associated with deactivations in the vmPFC and hippocampus. 223 We expected the mega-analysis to be more sensitive than previous studies in detecting subtle 224 effects in other brain regions not previously (or not consistently) identified. Second, we 225 assessed variation among healthy participants. Given their role in mediating subjective arousal and autonomic expression of fear²⁷, we hypothesised that regions including the 226 227 vmPFC and the anterior-to-mid cingulate cortex would show the greatest between-subject 228 heterogeneity. Third, we examined how individual differences (e.g., age, trait anxiety) and 229 task variables (e.g., task instructions) influenced this variation. Finally, we explored 230 differences in the neural correlates of fear conditioning between individuals with anxiety-231 related and depressive disorders and healthy controls, as well as among clinical subgroups 232 (e.g., PTSD, SAD).

233

234 <u>RESULTS</u>

All results are available in a free open-access repository (see **Data availability statement**).

236

Human fear conditioning is associated with extensive brain activation and deactivation in healthy individuals

239 In the mega-analysis (Fig. 1a), we included data from 1888 healthy individuals (42 240 experiment samples) and used linear mixed-effect models (LMMs) to perform a mega-241 analysis of whole-brain activation during fear conditioning (CS+>CS- contrast). We 242 observed significant activation encompassing clusters within the bilateral anterior and mid 243 insular cortices; the secondary somatosensory cortices (SII); the dlPFC; the lateral premotor 244 cortices; and the dorsal and lateral cerebellum (Fig. 1b). Significant activation was also 245 observed in multiple regions across the cortical midline, including the dACC extending to the 246 pre-supplementary and supplementary motor areas (SMA), ventral posterior cingulate cortex, 247 and dorsal precuneus (dPrec).

Additionally, the CS+>CS- mega-analysis revealed the broad activation of subcortical regions, particularly the thalamus and basal ganglia. The largest of these activation patterns were observed in the dorsal striatum, specifically the caudate nucleus (CN); the globus pallidus extending to the striatum; the ventral tegmental area extending to the habenula; the

- mediodorsal thalamus (Thal); and the midbrain tegmentum. Peak activation of the midbrain
 was noted in two bilateral clusters in the approximate location of the substantia nigra/red
 nucleus and pretectal nuclei. To specifically assess the role of the amygdala, we conducted a
 Region of Interest (ROI) mega-analysis focusing on this region (see Materials and
 Methods), which indicated that neither the left (Cohen's d = 0.13, 95% CI [-0.029, 0.624])
 nor the right amygdala (Cohen's d = 0.12, 95% CI [-0.002, 0.260]) showed significant
- 258 activation during fear conditioning (both p-values > 0.05).
- 259 We also observed significant deactivations (CS+<CS- contrast) during fear 260 conditioning, predominantly in regions of the default mode network (Fig. 1c). This included 261 the posterior cingulate cortex (PCC) and precuneus; the vmPFC extending to the mPFC and 262 subgenual cingulate cortex medially, as well as the left dorsal prefrontal cortex (dPFC); the 263 bilateral angular gyri; and the parahippocampi and hippocampi (Hipp). Additional 264 deactivation was observed in the lateral orbitofrontal cortex; the primary somatosensory 265 cortex (SI); as well as the left temporal (TG) and fusiform gyri (see Supplementary Fig. S1 266 for detailed activation and deactivation across axial, sagittal, and coronal slices).
- 267

Healthy individuals show substantial heterogeneity in the neural correlates of fear conditioning

270 We estimated voxel-wise normative models of fear-conditioning related activation using the 271 CS+>CS- contrast from 894 controls (training sample), and specifying age, biological sex, 272 sample, and task variables as covariates (see Materials and Methods for all variables. The 273 normative modeling sample is smaller than the mega-analysis due to the requirement for 274 participants to have data on all covariates used in model construction). Testing these models 275 with a held-out test sample (n=646) showed good model fit with explained variance reaching 0.3 in regions that showed activation during fear conditioning (Fig. 1b), and skew and 276 277 kurtosis within acceptable limits (Supplementary Fig. S2). For each participant in our held-278 out test sample, we then calculated a deviation score (z-score) within each voxel. In other 279 words, for each participant, we quantified the distance from the predicted mean activation of 280 each voxel, relative to the normative reference distribution for that voxel (Fig. 1d). While 281 almost every voxel had at least 5 participants with large deviations (deviations $>\pm 2.6$; 282 Supplementary Fig. S3), controls frequently had large deviations (both positive and 283 negative) within the most ventral region of the vmPFC and inferior temporal pole, which we 284 interpret to reflect varying signal intensity within this region notoriously prone to signal drop 285 out; we thus chose to interpret deviations within this region with caution (Fig. 1e).

Individual differences have small or nonsignificant associations with fear conditioning at the neural level

We examined the role of the following individual differences variables using LMMs and normative models (**Fig 1a**): age, biological sex, and self-reported trait anxiety and depressive symptoms. In normative models, we analyzed both regression coefficients, reflecting each variable's contribution to the regression equation, and structure coefficients, indicating the direct bivariate relationship between a variable and brain activity without accounting for other predictors.

295 In LMMs, age (n=1884 controls) and biological sex (n=1888 controls) showed a 296 significant association with brain activation or deactivation during fear conditioning 297 (Supplementary Results and Supplementary Fig. S4). However, the effect sizes were 298 small. Regression and structure coefficients also showed minimal effects of age and 299 biological sex (n=646 controls) (Supplementary Results and Supplementary Fig. S4). 300 Neither trait anxiety (n=1402 controls), using either harmonised or non-harmonised scores 301 (Supplementary Methods), nor depressive symptoms (n=213 controls) were significantly 302 associated with brain activation or deactivation during fear conditioning in LMMs. Similarly, 303 elastic net regressions showed that whole-brain deviation scores derived from normative 304 models could not explain the variance in individual levels of trait anxiety (n = 751 controls 305 and cases; $r^2 = -0.095$, p = 0.459), nor depressive symptoms (n = 152 controls and cases; r^2 306 = -0.257, p = 0.605). See **Methods** for a note on negative r^2 values.

307

308 Task variables have a robust effect on brain activation during fear conditioning

309 The influence of task variables on brain activation during fear conditioning was also 310 examined using LMMs and structure coefficients from normative models in healthy controls. Several task variables were associated with consistent effects across individuals. 311 312 These included pre-task instructions about CS-US contingency, the type of US, the use of 313 paradigms with multiple CSs (i.e., more than one CS+ or CS-), the reinforcement rate (i.e., 314 percentage of CS+ followed by a US), and possible US confounding through inclusion of the 315 US within the CS+>CS- contrast. 316 Partial instructions about CS-US contingency (n=1388) were associated with

317 significantly increased activation in the supplementary motor area and superior parietal

318 lobule compared to no instructions about contingency (n=500) in LMMs. Structure

8

coefficients from the normative models (n=646) showed that partial instructions (as
compared to no instructions) produced a model predicting more activation in the bilateral
anterior insula, the thalamus, the left caudate, clusters within the dorsomedial prefrontal
cortex, the dorsolateral precuneus, and in the posterior region of the vmPFC. The model also
predicted less activation within the bilateral visual cortex, the anterior medial temporal gyrus,
and in the anterior vmPFC with the use of partial instructions (Figure 2a). Note that we
excluded instructed conditioning studies (Materials and Methods).

326 Compared with an auditory US (n=337), a tactile electric shock US (n=1472)327 produced significantly greater activation in bilateral dorsal mid-insula, dorsal medial 328 thalamus, and pre-supplementary motor area, extending to the dACC (n=337) in LMMs. In 329 normative modelling analyses, a tactile electric shock US predicted increased activation 330 within the dACC extending to the pre-supplementary motor area, the dorsal precuneus, 331 secondary somatosensory cortex, the bilateral dorsal mid- to- posterior insula, the midbrain 332 and pons, and the superior cerebellum, and less activation (i.e., more deactivation) within an 333 expanse of the vmPFC, and S1. Moreover, the use of an auditory US was significantly 334 associated with increased activation in the left auditory cortex and was predictive of 335 increased activation in the bilateral auditory cortex (superior temporal lobe) and less 336 deactivation (i.e., more differential activation) within an expanse of the vmPFC extending to 337 the dorsomedial prefrontal cortex, posterior cingulate cortex, angular gyrus, and S1 (Figure 338 2b).

339 In LMMs, compared to paradigms with a single CS+(n=1283), paradigms with 340 multiple CS+(n=605) produced increased activation in the left supplementary motor area 341 (SMA) and left dorsal precuneus and widespread increased deactivation in regions including 342 the bilateral temporal poles, the right parahippocampal gyrus extending to the fusiform gyrus, 343 the left visual association cortex extending to the angular gyrus, and the right primary motor 344 and somatosensory cortex. Comparing paradigms with multiple CS- (n=302) and those with a 345 single CS- (n=1586) revealed identical regions with increased activation to paradigms with 346 multiple CS+. Conversely, increased deactivation was shown in the bilateral anterior 347 hippocampus, ventral PCC, primary motor and somatosensory cortex, precuneus, and right 348 mid-insula. In normative models, this was modelled using two variables (multiple CS+ and 349 multiple CS-). Multiple CS+ predicted less activation within the bilateral amygdala, a 350 bilateral expanse of S1, the angular gyrus, the posterior cingulate cortex, the bilateral 351 putamen and caudate, and the lingual gyrus. Similarly, multiple CS- predicted decreased 352 activation within a bilateral expanse of S1 and the lingual gyrus (Figure 2c).

353 Reinforcement rate, treated as a continuous variable, did not relate to brain activation 354 during conditioning in LMMs. However, due to the non-normal distribution of reinforcement 355 rates across studies and individuals, we categorized reinforcement rates (e.g., 30%, 50%, and 356 100%) and conducted ANOVA-like LLMs followed by pairwise comparisons with Holm-357 Bonferroni correction, which revealed significant effects (Figure 2d). In particular, the 358 comparisons involving the 50% reinforcement rate category was the category where significant differences between categories occurred most frequently. The significant 359 360 differences between the reinforcement rate categories occurred both with (Supplementary 361 Fig. S5) and without (Supplementary Fig. S6) US confounding. The structure coefficients 362 for reinforcement rate (as a linear association), showed that a higher reinforcement rate 363 predicted greater activation within visual regions (calcarine, lingual gyrus and cuneus), the 364 precuneus, the left dorsolateral prefrontal cortex, the superior gyrus of the temporal lobe, and 365 (less deactivation of) an anterior region of the vmPFC. Conversely, a higher reinforcement 366 rate predicted less activation within the mid-cingulate cortex, the bilateral anterior insula, a 367 posterior region of the vmPFC as well as the thalamus and caudate (Figure 2d).

368 Finally, potential US confounding (n = 997), compared to no confounding (n = 891), 369 was associated with significantly increased widespread activation during fear conditioning 370 (CS+ > CS- contrast). This activation was observed across the bilateral fusiform and lingual 371 gyri, temporal poles, angular gyri, posterior insula, primary motor cortex, retrosplenial cortex 372 (extending to the posterior hippocampus), and right amygdala, predominantly in the 373 superficial amygdala, in linear mixed models (LMMs). Similarly, structure coefficients from 374 the normative models showed that the model predicted greater activation within the bilateral 375 mid-cingulate cortex extending to the dorsomedial prefrontal cortex and pre-supplementary 376 motor area, angular gyri, mid-to-posterior insula, superior temporal gyrus and temporal poles, 377 fusiform gyri and lateral mid-occipital gyrus, amygdala, caudate, dorsal thalamus, and 378 dorsolateral cerebellum with potential US confounding (Figure 2e).

The remaining task variables (for example, the number of trials during
preconditioning) showed weaker effects or were not significantly associated with brain
(de)activation during conditioning in the mega-analysis or normative modelling analyses
(Supplementary Results and Supplementary Figs. S7 and S8).

383

384 Cases and controls show differences in neural activity during fear conditioning

In the mega-analysis, individuals with anxiety-related and depressive disorders (cases,
 n=311) showed significantly increased activation in the right ventrolateral prefrontal cortex

387 (anterior pars orbitalis), dorsal frontal pole, posterior cingulate cortex, left temporal pole, and 388 bilateral primary motor areas compared to controls (n=1888) (Fig. 3a). Similar results were 389 found when comparing individuals with anxiety-related disorders (i.e., excluding major 390 depressive disorder; remaining n=297) and controls, with additional clusters observed in the 391 dorsal prefrontal cortex, visual association cortex, and primary somatosensory cortex 392 (Supplementary Fig. S9). After excluding individuals who were taking medication at the 393 time of the scan, those with anxiety-related and depressive disorders (n=221) still showed 394 significantly increased activation in the dorsal medial prefrontal cortex, dorsal PCC extending 395 to the superior parietal lobule, left medial TG and bilateral ventrolateral prefrontal cortex 396 compared to controls (Supplementary Fig. S10).

397 In normative modelling, we tested our clinical test sample (260 controls + 222 cases) 398 against our reference normative models. This analysis compared the individuals' deviation 399 scores (z-score) within each voxel, and quantified, as a percentage of the sample, the 400 frequency of participants with large positive or large negative deviations (Fig. 3b). Cases 401 showed a different pattern of deviation frequency than controls. Large deviations (i.e., more 402 activity than would be predicted by the model) were common across cases within the 403 dorsomedial prefrontal cortex, the primary somatomotor cortex, precuneus, the bilateral 404 primary visual cortex (medial occipital lobe extending to the inferior medial and inferior 405 lateral lobe) extending to the lingual and fusiform gyrus. As with controls, cases frequently 406 had large negative deviations within the most ventral region of the vmPFC. Finally, when we 407 compared the frequency of extreme deviations throughout the whole brain (Normative 408 Probability Maps thresholded at $> \pm 2.6$), we found that cases had, on average, a greater 409 frequency of extreme deviations than controls (Mann Whitney U-test = 111167.5, p= 0.014; 410 Fig. 1h).

411

412 Individuals with PTSD or OCD show distinct patterns of activation and deviations that 413 discriminate them from those with other disorders

- 414 We divided our patient sample by primary diagnosis (PTSD, n=141; OCD, n= 68; GAD,
- 415 n=48; and SAD, n=31; other diagnoses were not included due to small sample size).
- 416 ANOVA-like LMMs indicated that there were significant differences in brain activation
- 417 during conditioning among patient groups. Post-hoc pairwise comparisons corrected for
- 418 multiple comparisons showed that the most significant differences occurred between

419 individuals with PTSD and OCD with respect to individuals with GAD and SAD

420 (Supplementary Fig. S11).

421 Similarly, normative modelling analyses identified a significant difference in the 422 frequency of large deviations among patient groups (Kruskal-Wallis H-test = 71.529, 423 p=1.984^-13; Fig. 3c). Follow-up Mann Whitney U-test's (FDR corrected for multiple 424 comparisons) clarified, for example, that extreme deviations occurred most frequently in 425 individuals with PTSD, as compared to other disorders, followed by OCD. We then 426 illustrated the location of these extreme deviations at the voxel level to determine whether 427 they were spatially overlapping within and between patient groups (Fig. 3d). Individuals with 428 PTSD showed frequent large positive deviations within the bilateral medial occipital lobe 429 extending to the inferior temporal lobe and lingual gyrus, bilateral vIPFC, an expanse of the 430 dmPFC, precuneus, and bilateral amygdala. They also showed frequent large negative 431 deviations within an expanse of the vmPFC (posterior vmPFC focus), precuneus, and a focus 432 of the lingual gyrus and fusiform gyrus. There were very few regions wherein individuals 433 with GAD showed overlapping large deviations, and similarly for SAD except for a small 434 region of the bilateral lingual gyrus frequently found to have large positive deviations. 435 Individuals with OCD showed frequent large deviations within the inferior parietal cortex, 436 and temporal pole.

437 A support vector machine could not classify cases from controls better than chance 438 using whole-brain deviation maps (mean AUC = 0.44 ± 0.07 , p = 1.0). However, a multi-439 class support vector classifier confirmed a unique pattern of deviations among cases (Fig. 440 3e). More specifically, PTSD, on average, was accurately classified 54.55% of the time 441 (mean F1 score = 0.58; p= 2.06×10^{-23} , balanced accuracy = 0.43 where chance level across 4 442 classes = 0.25). Interestingly, despite fewer overlapping extreme deviations within the OCD 443 group, the classifier was able to accurately label individuals with OCD 73.74% of the time 444 (mean F1 score: 0.57; p =1.71x10-7). GAD and SAD were only accurately classified 31.78% 445 (mean F1 score: 0.35) and 13.33% (mean F1 score: 0.17) of the time, respectively, and were 446 often misclassified as OCD. The mean voxel-wise coefficient weights and frequency of 447 contribution (in penalised permutations) to this classification are displayed in 448 Supplementary Fig. S12.

449

451 **DISCUSSION**

We compiled the largest (n=2199) sample of individual-level fear conditioning fMRI data to date to comprehensively delineate the neural correlates of human fear conditioning, to assess the influence of several relevant sources of variation - including individual differences and task variables- and to evaluate potential differences in fear conditioning at the neural level between individuals with anxiety-related and depressive disorders and controls.

457 Our individual-level mega-analysis mapped fear conditioning activation to the 458 "central autonomic-interoceptive" or "salience" network. As hypothesised, fear conditioning 459 was associated with robust activations in the anterior insula, ventral striatum, pre-460 supplementary /supplementary motor areas, dorsal anterior cingulate cortex, and dorsolateral 461 prefrontal cortex. It was also associated with activation in several subcortical regions, 462 particularly the thalamus and basal ganglia. Also as hypothesised, fear conditioning was 463 associated with robust deactivations in the ventromedial prefrontal cortex and hippocampus. 464 Other brain regions that were deactivated during conditioning included primarily regions of the default mode network (e.g., posterior cingulate cortex and precuneus). The brain 465 466 activation and deactivation patterns observed in this study closely mirror those identified in a prior group-level meta-analysis of fear conditioning $(n = 677)^3$. This consistency is notable, 467 468 especially considering the minimal overlap between the two studies, with only six common 469 samples. These findings confirm that the neural mechanisms underlying fear conditioning are 470 robust, reliably engaging key brain regions involved in threat and safety processing, and 471 support the continued use of fear conditioning paradigms in basic neuroscience and clinical 472 research. Our findings highlight the utility of fear conditioning paradigms for developing 473 interventions targeting specific brain regions and suggest that normative modeling can 474 enhance precision by tailoring treatments to individuals with abnormal activation patterns.

475 The amygdala was not robustly activated during fear conditioning in either our mega-476 analysis or specific ROI-mega-analysis, consistent with our previous group-level meta-477 analysis³. Inconsistencies regarding amygdala involvement in human fMRI conditioning 478 studies have been attributed to several factors. These include inadequate small sample sizes, 479 temporal specificity (i.e., amygdala activation occurs during early trials and habituates thereafter^{28,29}, so averaging across all conditioning trials may obscure these effects), 480 481 anatomical specificity (the amygdala consists of distinct subregions, such as the basolateral 482 (BLA) and centromedial (CMA) amygdala, and averaging responses may mask specific

activations^{8,10}, and methodological factors⁸. A recent fMRI fear conditioning study with a 483 484 large sample (n=601, including individuals with anxiety-related disorders and controls) and 485 using a multiple CS (2CS+, 1CS-) paradigm found significant amygdala activation during the 486 early phase (first four trials) of fear conditioning, with distinct activation patterns in the BLA 487 and CMA⁸. In our study, like most previous work³, we used the CS+ vs CS- contrast averaged across all trials for most samples. This approach may have overlooked early-trial 488 489 specific amygdala activation and lacked the sensitivity to capture trial-by-trial dynamics. 490 However, in our previous meta-analysis specifically comparing early and late conditioning, 491 we also did not find evidence that the amygdala was activated during early conditioning trials³. Notably, in the current study, we identified specific task variables -the use of 492 493 paradigms with multiple CS+ or US confounding - or diagnostic categories (such as PTSD; 494 see also ²⁵) that modulate amygdala activity during conditioning. Our findings also 495 underscore the limitations of combining individuals with anxiety-related disorders and 496 controls in this type of analysis. In any case, together with previous findings, our study 497 highlights the importance of considering temporal dynamics when assessing amygdala 498 activity during human fear conditioning⁸.

499 Sociodemographic factors, such as age and biological sex, had only minor effects, 500 suggesting that fear conditioning mechanisms are relatively stable at the neural level across 501 different ages and between sexes. Additionally, none of our analyses found significant 502 associations between brain activation during conditioning and levels of trait anxiety or 503 depressive symptoms. While some mental health frameworks suggest that dimensional 504 constructs of psychopathology, like trait anxiety, may better reflect neural activation patterns³⁰, the variability and complexity in the neural states underlying these constructs and 505 506 their lack of direct mapping to neural processes makes it challenging to identify clear linear relationships^{31,32}. 507

508 Both LMMs and normative modeling analyses indicated that an important source of 509 variation in neural responses during fear conditioning is related to the nature of the task itself. 510 Activation within key "fear conditioning regions" was strongly influenced by task design 511 choices (e.g., reinforcement rate, partial instructions) and contrast design (e.g., US 512 confounding). These findings help clarify previous inconsistencies in the literature (see 513 comment on the amygdala). More importantly, they provide essential guidance for designing 514 future human fMRI fear conditioning studies. Specifically, researchers can now anticipate the expected effects, along with their magnitudes, of various task or contrast design choices at theneural level, allowing for adjustments in advance.

The differences in brain activation during conditioning between individuals with 517 518 anxiety-related and depressive disorders and healthy controls that were found in the mega-519 analysis aligned with normative modeling results, which showed that cases had a higher 520 frequency of large deviations compared to controls. Importantly, these differences remained 521 significant even after excluding cases on medication. This is crucial, as commonly used 522 treatments like selective serotonin reuptake inhibitors (SSRIs) can influence brain activation 523 patterns observed with fMRI³³. Thus, the observed differences are unlikely to be due to the 524 effects of medication. When the analysis was limited to anxiety-related disorders, significant 525 differences in brain activation persisted, indicating that individuals with pathological anxiety 526 are characterized by abnormal neural responses during fear conditioning. These findings 527 suggest that such abnormalities could eventually serve as neural markers for anxiety-related disorders^{34,35}. 528

Among individuals with anxiety-related disorders, those with PTSD and OCD showed 529 530 distinct patterns of bran activation and had distinct patterns of voxel-wise deviations that can 531 be used to distinguish them from other anxiety-related disorders. This provides 532 neurobiological support for the decision of current diagnostic classifications to separate these 533 conditions³⁶. In addition, it may provide new insights into the underlying mechanisms of 534 psychopathology. The sample of individuals with PTSD was still relatively heterogeneous, 535 with data from three independent samples, and yet there were often overlapping extreme 536 positive deviations. Furthermore, using the derived deviation scores we were able to 537 differentiate and classify individuals with PTSD and OCD with striking precision, compared 538 to GAD and SAD. This is consistent with the previous literature that used mean averaging 539 methods and reported differences in activation levels between groups of individuals with PTSD, compared to controls^{25,37}. Taken together, this suggests that the neural mechanisms 540 541 engaged during a fear conditioning paradigm are specifically relevant to the psychopathology 542 of, and to some extent, similarly altered across individuals with PTSD; reinforcing the notion 543 that fear conditioning is a foundational process in PTSD psychopathology, and as such, related tasks are a useful clinical model ²⁰. The accurate differentiation of OCD, despite few 544 545 regions of overlapping large deviations, appeared to be driven by consistent coefficient weights with a region of the bilateral superior temporal gyrus and right vIPFC. Combined 546

547 with no strong behavioural evidence³⁸, mixed imaging evidence of differences in fear conditioning tasks in this population $^{39-42}$, and evidence of altered baseline activity within the 548 superior temporal region⁴³, this finding may be interpreted as capturing compensatory 549 550 mechanisms that individuals with OCD engage to overcome obsessions and achieve the same behavioural output^{38,43,44}. Despite significant differences in the frequency of extreme 551 552 deviations between individuals with GAD and SAD compared to controls, their limited spatial overlap and less accurate classifications, suggest that there is significant heterogeneity 553 554 in fear conditioning among individuals with these diagnoses. Thus, while we suggest that the 555 psychopathology of PTSD is uniquely related to fear or threat processing as captured by fear 556 conditioning tasks, we propose that other anxiety-related disorders, particularly GAD and 557 SAD are less so.

558 Our study has several limitations. First, despite using harmonized pre-processing pipelines and statistical models to account for site differences, variations in diagnostic 559 560 routines and imaging acquisition contributed to sample heterogeneity, particularly among 561 individuals with anxiety and depressive disorders (a label that includes already heterogenous 562 disorders). Second, mega-analyses may have limited power to detect effects in small subgroups (e.g., SAD patients). Third, for participants with a mental health diagnosis, we 563 564 focused on primary diagnoses and we could not assess (or control for) comorbidity. Fourth, 565 while our normative models adjusted for site, age, biological sex, and task influences on brain 566 activity, future studies should explore the impact of adding more variables in the model 567 construction. Finally, cross-sectional data on brain activation during fear conditioning raises 568 concerns about the reliability of outcome measures. Although fMRI-based fear conditioning 569 shows limited test-retest reliability at the whole-brain level, significant within-subject similarity across repeated time points has been observed⁴⁵, suggesting that large test-retest 570 571 samples could help further validate the normative modeling approach, as demonstrated in other tasks⁴⁶. 572

With this work, we provide the largest analysis of the neural correlates of human fear conditioning and potential sources of variation to date. Our results confirm that human fear conditioning is a robust phenomenon at the neural level, consistently engaging multiple brain regions within the central autonomic-interoceptive or salience network. Our comprehensive review of the influence of task design choices on elicited and predicted brain activation can be used to help interpret differences in the previous literature and should remind researchers

- 579 of the potentially significant influence of task design choices. Finally, we found that there are
- 580 overall differences in fear conditioning at the neural level between individuals with anxiety-
- related and depressive disorders and controls, and that a unique mechanism of PTSD
- 582 psychopathology is well captured by fear conditioning paradigms, supporting the use of these
- 583 models to study this disorder.
- 584
- 585

587 MATERIALS AND METHODS

The current manuscript combines two pre-registered analyses of individual-level fear 588 conditioning fMRI data (https://osf.io/7n953; https://osf.io/w74bt . Data were collated from 589 590 43 samples originating from 23 sites in 9 countries. Collation was coordinated by the lead 591 group (IDIBAPS Barcelona). ENIGMA Fear Conditioning is part of the larger ENIGMA-Anxiety Working Group⁴⁷. Table 1 and Table 3 summarize the descriptive information on 592 593 the samples. Informed consent was obtained from all participants by the sites providing their 594 data. Some site-specific data have been reported previously, but no reports have examined all 595 individual data together.

596

597 Fear conditioning task

598 We included data from participants who completed a fear conditioning experiment during an 599 fMRI scan. There are several human fear conditioning paradigms, which vary based on the time elapsed between the CS and the US (e.g., delay, trace, simultaneous, or backward 600 601 conditioning), the use of one (single-cue) versus two or more (differential-cue) CSs, and the instructions given to participants⁴⁸: 1) *No instructions*: For example, "During this experiment, 602 603 you will see various images and might experience mild electric shocks at certain times"; 2) 604 Partial instructions: For example, "During this experiment, you may see a particular image 605 sometimes followed by a mild electric shock. However, the shock won't happen every time 606 you see the image, and sometimes it might not appear at all. Pay attention to the images, as 607 they might give you some indication of when the shock could occur"; 3) Full instructions 608 (instructed conditioning): For example, "During this experiment, you will see the image X, 609 which is always followed by a mild electric shock. Whenever this image appears, it will be 610 followed by the shock shortly afterward. No other images will be associated with the shock".

We focused on delay differential cue-conditioning paradigms with no or partial
instructions (i.e., excluded instructed conditioning studies), and focused our analysis on
comparing the response to a CS+ compared to a CS-. Table 2 summarises information on the
fear conditioning tasks included in this manuscript.

615

616 Non-imaging data: sociodemographics and individual differences

617 All sites were asked to provide information regarding sociodemographics (age, biological

618 sex) and individual differences: trait anxiety, assessed with the Trait subscale of the State-

619 Trait Anxiety Inventory (STAI-T)⁴⁹; and depressive symptoms, assessed with the Beck

- 620 Depression Inventory (BDI)⁵⁰ (Supplementary Table S1). For individuals with anxiety-
- 621 related and depressive disorders, sites were asked about principal mental health diagnosis and
- 622 psychotropic medication use at the time of the scan (Supplementary Table S2). Previous
- 623 normative studies of trait anxiety (STAI-T) have shown additive and multiplicative
- 624 differences across countries, for which we harmonised trait anxiety scores across countries
- using ComBat¹⁴(Supplementary Methods) and conducted subsequent analyses twice: once
 with the raw scores and once with the country-harmonised scores.
- 627

628 Non-imaging data: task-related variables

629 We collected information about the following task variables: instructions given to the 630 participant about contingency prior to the task (partial versus no information); use of a pre-631 conditioning phase (where the CSs are presented prior to any presentation of the US); number 632 of trials during pre-conditioning; use of a paradigm with multiple CSs (i.e., more than one CS+ or CS-) during conditioning; number of CS+ and CS- trials during conditioning; average 633 634 ITI (inter-trial interval); average ISI (inter-stimulus interval, i.e., between the CS+ and the US); reinforcement rate (percentage of CS+ followed by a US); type of US; type of CS; 635 636 potential US confounding (i.e. whether trials followed by the US were included in the CS+ vs 637 CS- contrast, and therefore the effects of the US may confound the effects of the CS+); the 638 number of CS+ trials included in the fMRI contrast; the number of CS- trials included in the 639 fMRI contrast, and the use of a concurrent task during conditioning. For studies assessing 640 awareness (conscious recognition of the association between the CS+ and the US, after the 641 task), we also asked about participant's contingency awareness (yes vs. no). Task variables 642 were not explicitly listed in the pre-registration. The decision to include these variables was 643 based on previous research and their inclusion in the analyses was contingent on their 644 availability.

645

646 Processing of neuroimaging data

We included only neuroimaging data acquired with whole-brain coverage. Individuallevel raw task-based fMRI data were processed using the Harmonized Analysis of Functional
MRI pipeline (HALFpipe, version 1.2.2)⁵¹, a tool developed within the ENIGMA consortium
to harmonise fMRI analyses across sites and facilitate reproducible analyses. HALFpipe
provides a standardised workflow that extends fMRIprep⁵² with several additional
preprocessing steps, including spatial smoothing, grand mean scaling, temporal filtering, and

653 confound regression. Moreover, HALFpipe generates a standardised quality assessment of

654 the preprocessing outputs and imaging raw data (Supplementary Table S3). We used

655 HALFPIPE default parameters (smoothing using 6mm FWHM; confound removals using

656 ICA-AROMA; and a high-pass filter of 125 s).

For the current study, each site was provided with a comprehensive manual to perform image pre-processing and quality control with HALFpipe in a fully harmonised manner, and each group shared the HALFPIPE output files for each individual along with the non-imaging data for each individual. The lead group (IDIBAPS-Barcelona) processed 5 sites, aggregated all the data, and carried out additional quality control procedures and measures to ensure the comparability of the data, as described in the **Supplementary**

663 Methods.

664

665 Statistical analyses

We conducted two types of statistical analyses: mega-analyses and normativemodelling analyses.

668

669 Mega-analyses

670 Participants

- 671 We included data from 2199 participants (M_Age=25.26, SD=5.47; 57.2% female),
- 672 comprising 1888 healthy controls (M_Age=25.85, SD=8.51; 51.53 % female) and 311
- 673 individuals with a primary diagnosis of an anxiety-related or depressive disorder
- 674 (M_Age=29.91, SD=10.75; 58.84 % female) (Table 3). Diagnoses were established with

675 structured clinical interviews.

676

677 Pre-scaling

678 Although we used the exact same processing protocol and conducted extensive quality

679 control (see above), we observed differences in the BOLD response between samples, most

- 680 likely due to varying units of measurement (note that MRI scans are acquired in arbitrary
- 681 units⁵³. To address these differences, we pre-scaled the images for healthy controls so that,
- 682 for each sample, the voxel-wise-median standard deviation (after removing the effects of
- 683 covariates) was 1 (see Supplementary Methods). We then applied the pre-scaling
- 684 parameters obtained from the healthy controls to the cases (individuals with a primary

685 diagnosis of an anxiety-related or depressive disorder). This approach differs from using the

- 686 individual z-statistic images (i.e., dividing the BOLD response by its standard error), which
- 687 we did not adopt for the mega-analysis. The reason is that the standard error may differ
- between cases and controls, and thus, differences in z-statistics between groups could reflect
- 689 differences in the standard error rather than in the BOLD response (for more details, see
- 690 Supplementary Methods).
- 691

692 Analyses

693 Differences in brain coverage across sites prevented us from using the standard ComBat 694 method, which determines the harmonisation parameters using all voxels14. Additionally, 695 there was no need to remove differences in scaling because we had already pre-scaled the 696 images as described above. Thus, we used LMMs (with the sample as a random intercept) to investigate: 1st the pattern of brain activation during fear conditioning in healthy controls and 697 698 in cases (individuals with anxiety-related and depressive disorders), which tested whether the 699 mean activation in each voxel was non-null; 2nd the pattern of differences in brain activation 700 during fear conditioning between cases and controls, which tested whether activation in each 701 voxel was different between cases and controls; 3rd the pattern of differences in brain 702 activation during fear conditioning among patient groups (PTSD, OCD, GAD, SAD), testing 703 whether activation in each voxel differed among patient groups; 4th the potential influence 704 of individual differences and task variables (see above) on brain activation during fear 705 conditioning in healthy controls, which tested whether activation in each voxel was 706 significantly associated with each task variable. In all models, we incorporated age and sex as 707 covariates. Significant LMMs comparing three or more groups (analog to ANOVAs) were 708 followed by pairwise comparisons with Holm-Bonferroni correction. 709 We also conducted an ROI mega-analysis focusing on the amygdala. For this analysis, we 710 extracted the pre-scaled BOLD response in the left and right amygdala based on the 711 Automated Anatomical Labeling atlas, version 3 (AAL3)54. We used an LMM, with age and 712 sex as covariates, to test whether the mean activation significantly differed from zero. 713 We fitted the LMMs using custom functions (included in 'combat.enigma' R 714 package) that call the 'nlme' R package voxel-wise and address voxel-specific details (e.g., 715 varying collinearity due to differing brain coverage; see Supplementary Methods). FSL was then used to derive cluster-based corrected p-values using Gaussian Random Field (GRF)theory.

718 Effect sizes

719 To compare the effect sizes of different variables and to exclude findings with 720 negligible or very small effects, we converted the regression coefficients of the peaks into 721 correlation coefficients (Pearson r). For variables comparing two groups (e.g., cases vs. 722 controls), we also calculated the corresponding standardised mean differences (Cohen's d). 723 We considered effects with r<0.2 (roughly equivalent to d<0.4 for balanced binary variables) 724 to be small, and only highlighted larger effects (i.e., r>0.2, i.e., at least moderate) in the main 725 text. It is important to note that peak effect sizes should be interpreted with caution, as they 726 correspond to the peaks of clusters of statistical significance and are, therefore, larger than 727 those obtained by other methods. Effect sizes for all the LMMs can be found at 728 https://zenodo.org/uploads/13933681

729

730 Normative modelling analyses

731 Participants

We included data from 2022 participants; 1800 healthy controls (age range 8-66 years, mean age: 25.66 ± 8.4 , 53.05% female) and 222 individuals with anxiety-related and depressive disorders (age range 9-63, mean age: 28.27 ± 11.06 , 54.95% female) to build and test the normative models. See **Table 1** note to explain discrepancy in participant numbers from mega-analysis.

737 Generating Normative Models of Activation to the CS+ > CS- contrast

738 The z-statistic maps (files) from the CS+ > CS- contrast for each participant were used as

inputs (response variables) for the normative models. We created a normative model of fear-

- related activation per voxel, as a function of age, sex, and task variables by training a
- 741 Gaussian Bayesian Linear Regression (BLR) model to predict activation for the CS+ > CS-
- 742 contrast⁵⁵. The task variables modelled were: the instructions given to the participant about
- the CS-US contingency prior to the task, the number of trials during preconditioning, the type
- of US, the number and type of CS+ and CS- stimuli ("use of a paradigm with multiple CSs"

- in LMM models), the number of CS+ and CS- trials included in the CS+ > CS- contrast, the
- average ITI, the average ISI, the reinforcement rate, and US confounding. We included
- 747 dummy coded site-related variables (sample, and MR strength) and a b-spline basis
- 748 expansion as additional covariates of no-interest. This was performed in the Predictive
- 749 Clinical Neuroscience toolkit (PCNtoolkit) software v0.26
- 750 (https://pcntoolkit.readthedocs.io/en/latest) implemented in python 3.8. Generalisability was
- assessed by using a stratified train-test sample (train: 894, control test sample: 646).

752 Quantifying voxel-wise deviations from the reference normative model

- 753 To estimate a pattern of regional deviations from typical brain function for each participant in
- the control test sample (n = 646, mean age: 25.45 ± 7.19 years, 52.16% female), we derived a
- normative probability map (NPM) that quantifies the voxel-wise deviation from the
- normative model. The subject-specific Z-score indicates the difference between the predicted
- activation and true activation scaled by the prediction variance. This was repeated for the
- clinical test sample (n = 482, 260 controls + 222 cases, mean age: 26.76 ± 10.94 years,
- 54.97% female). We thresholded participant's NPM at $Z = \pm 2.6$ (i.e., $p < .005^{56}$) and summed
- the number of significantly deviating voxels for each participant. Kruskal-Wallis H-tests were
- vised to test for group (cases or controls) and diagnosis effects and, when applicable, follow-
- ⁷⁶² up Mann Whitney U-tests were False Discovery Rate (FDR)⁵⁷ corrected at $\alpha = 0.05$.
- 763

Association of normative models and their outputs to individual differences and task variables

766 *Model Coefficients:* To probe the magnitude of the influence of individual differences 767 (sociodemographics) and task variables on the predicted brain activation, we examined both 768 the regression coefficients and the structure coefficients (correlation coefficients) of all 769 sociodemographic and task variables input variables (for list of variables see 'Generating 770 Normative Models for BOLD signal in CS+ > CS- contrast'). Structure coefficients are preferable to regression coefficients when variables are collinear⁵⁸. Note that negative R² 771 772 values ("negative" explained variance) is a possible outcome when the model fails to 773 generalize effectively to new data, despite in-sample performance yielding non-negative 774 explained variance (which is always positive or zero by construction). This phenomenon is 775 not uncommon and arises when the model's predictions result in a residual sum of squares 776 that exceeds the variance of the true values.

777 Linear Regression (Elastic Net) and Support Vector Classification (SVC): We applied an elastic net linear regression as implemented in the scikit-learn package (version 1.0.2)⁵⁹ with 778 10 repeats of nested 5-fold cross validation [alphas = 0.0001, 0.001, 0.01, 0.1, 0.3, 0.5, 0.7, 1;779 90% train, 10% test split] to predict trait anxiety as measured by the STAI-T (n = 751), or 780 781 depressive symptoms as measured by the BDI (n = 440) from participants' whole brain 782 (unthresholded) deviation maps. The mean coefficient values and the frequency of the 783 voxel's contribution (in other words, how many of the cross-folds split found this voxel to be 784 important) indicate which voxel contributed to the prediction. The statistical significance of 785 these results was tested against a 1000-fold nested 5-fold test for each variable. To classify 786 participants (n = 703) who were contingency aware from those who were not based on their 787 unthresholded whole-brain deviation maps, we used an SVC model with a linear kernel, 788 regularisation parameter set to 1.0, and balanced class weights as implemented in the scikit-789 learn package (version 1.0.2).

790

791 Quantifying differentiable patterns of deviations between cases and controls

To classify individuals with anxiety-related or mood disorders and controls based on their whole brain unthresholded deviation maps, we used a SVC model with a linear kernel, regularisation parameter set to 1.0, as is common in neuroimaging, and balanced class weights (i.e. adjusted inversely proportional to class frequencies in the input data) as implemented in the scikit-learn package (version 1.0.2)⁵⁹. The evaluation metric for the classification is area under the receiving operator curve (AUC) averaged across all folds within a 10-fold cross validation framework.

799 Quantifying differentiable patterns of deviations among patient groups

800 We used a one versus rest support vector classifier (SVC OvR) model as implemented in the 801 scikit-learn package (sklearn.multiclass.OneVsRestClassifier version 1.0.2) to determine if 802 there were quantifiably differentiable patterns within the whole brain unthresholded deviation 803 maps among patient groups. Due to the small number of individuals with major depressive 804 disorder (n = 11), specific phobia (n=7) and panic disorder (n=2), this analysis only included 805 individuals with a diagnosis of PTSD (n=55), OCD (n=68), GAD (n=48) and SAD (n=31) 806 (total n = 202). The model classes were the participants' diagnosis. The evaluation metric for 807 the classification was the F1-metric (the harmonic mean of precision and recall, also known 808 as the balanced F-score, where values closer to 1 indicate greater classification success) per

- 809 class within a 5-fold cross-validation framework, and the statistical significance was tested
- 810 against a 1000-fold nested 5-fold test.
- 811
- 812

813 Data availability statement

- 814 All results from this manuscript can be found at
- 815 <u>https://zenodo.org/uploads/13933681?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjU3OWVIMGM5LWY</u>
- 816 <u>5ZmUtNDVhOC04MDM0LTgxMGFjZmJjNjgzMSIsImRhdGEiOnt9LCJyYW5kb20iOilwNWY1ZDZhYjZjYjJ</u>
- 817 <u>mMTFhOWRjYzdkMjZiZjgxYjk2NyJ9.CNDyT7ldr7R</u> 418i6olkAaOUKrpTvQFuKlfSQ qm6gZEkytRKPmHt
- 818 <u>AZWUWhB3ModXWa59-ehNegQERcnTimwJw</u>
- 819 The ENIGMA-Fear Conditioning Group (part of the ENIGMA-Anxiety Working Group²⁹ is
- open to sharing the individual-level data (HALFIPE results files) from this investigation to
- 821 researchers for secondary data analysis. To request access to data, an analysis plan can be
- 822 submitted to the ENIGMA-Anxiety Working Group
- 823 (<u>http://enigma.ini.usc.edu/ongoing/enigma-anxiety/</u>). Data access is contingent on approval
- by PIs from contributing samples.

825

826 Code availability statement

- 827 All code to reproduce the analyses in this manuscript is available at:
- 828 <u>https://github.com/Hannah-Savage/Fear_Conditioning_MegaAnalysis_NormModelling.</u>
- 829 The functions needed to conduct the mega-analysis are also included in the 'combat.enigma'
- 830 R package.
- 831
- 832
- 833

Sample	Country	Ν	Sex (%females)	Healthy Controls (n)	Patients (n)	Age M (SD)	Years of education M (SD)
Amsterdam_Visser/Kindt_sample_1	NL	18	72	18	0	22.06 (3.35)	NA
Amsterdam_Visser/Kindt_sample_2	NL	41	73	41	0	20.56 (1.79)	NA
Amsterdam_Visser/Kindtsample_3	NL	12	75	12	0	21 (1.35)	NA
Amsterdam_Visser/Kindtsample_4	NL	10	80	10	0	22.8 (2.04)	NA
Amsterdam_Visser/Kindtsample_5	NL	13	85	13	0	22.23 (4.07)	NA
Amsterdam_Visser/Kindtsample_6	NL	14	79	14	0	23.43 (2.71)	NA
Amsterdam_Visser/Kindtsample_7	NL	16	44	16	0	24.06 (3.36)	NA
Amsterdam_Visser/Kindtsample_8	NL	9	100	9	0	20.33 (1.41)	NA
Amsterdam_Visser/Kindtsample_9	NL	38	58	38	0	23.66 (3.78)	NA
Austin_Cisler	US	61	100	0	61	33.72 (8.48)	15.46 (2.64)
Barcelona_Cardoner	SP	71	66	45	26	22.66 (4.67)	14.49 (2.15)
Barcelona_Soriano_sample_1	SP	35	51	17	18	37.43 (10.54)	14.69 (3.72)
Barcelona_Soriano_sample_2	SP	147	50	122	25	24.76 (4.22)	18.63 (3.95)
Bielefeld_Lonsdorf_sample_1	GE	116	66	116	0	24.61 (3.61)	15.26 (2.14)
Bielefeld_Lonsdorf_sample_2	GE	80	56	80	0	24.88 (3.51)	NA
Bielefeld_Lonsdorf_sample_3	GE	28	64	28	0	24.68 (4.95)	13.36 (1.75)
Bochum_Elsenbruch	GE	29	48	29	0	26.45 (3.59)	17.45 (4.02)
Bochum_Merz_sample_1	GE	59	49	59	0	23.88 (4.17)	16.07 (3.4)

 Table 1. Descriptive statistics for all samples (N=43) included in the analyses.

Bochum_Merz_sample_2	GE	59	47	59	0	24.39 (3.83)	15.86 (3.72)
Bochum_Merz_sample_3	GE	47	49	47	0	22.87 (2.61)	NA
Bochum_Merz_sample_4	GE	29	0	29	0	24.21 (3.62)	NA
Bochum_Merz_sample_5	GE	31	0	31	0	24.71 (3.87)	NA
Bochum_Merz_sample_6	GE	60	50	60	0	23.57 (2.95)	NA
Columbia_Neria	US	95	46	65	30	35.65 (12.26)	15.11 (2.45)
Duke_LaBar_sample_1	US	38	47	38	0	24.68 (4.2)	NA
Duke_LaBar_sample_2	US	37	49	37	0	29.16 (11.07)	NA
Florida_Keil	US	14	36	14	0	19.79 (2.08)	14 (0)
Harvard_McLaughlin	US	89	55	75	14	13.06 (2.6)	7.04 (2.32)
Manitoba_Greening_sample_1	CA	13	38	13	0	24 (5.07)	17.15 (3.02)
Manitoba_Greening_sample_2	CA	31	55	31	0	24.23 (4.56)	NA
Melbourne_Harrison	AU	112	61	75	37	20.88 (2.34)	15.02 (2.21)
Munich_Koch	GE	45	56	23	22	34.47 (12.39)	NA
Munster_Moeck_sample_1	GE	42	69	42	0	26.02 (6.22)	12.33 (1.37)
Munster_Moeck_sample_2	GE	29	52	29	0	15.79 (0.98)	10.64 (0.99)
Reading_Reekum_sample_1	UK	21	57	21	0	24 (2.59)	NA
Reading_Reekum_sample_2	UK	50	60	50	0	17.8 (3.46)	11.34 (1.82)
MGH_Tuominen_sample_1	US	14	0	14	0	36.36 (9.61)	15.69 (1.84)
MGH_Tuominen_sample_2	US	37	43	37	0	28.51 (5.81)	17.08 (2.27)

Total n/Mean (SD)/Range		2199	52.69	1888	311	25.26 (5.47) 8-66	14.53 (2.56) 1-26
Vanderbilt_Kaczkurkin	US	81	0	53	28	33.47 (9.7)	15.74 (2.18)
Uppshala_Ahs	SW	278	58	278	0	33.87 (10)	14.16 (1.65)
Ulm_Abler	GE	50	0	50	0	22.6 (2.92)	NA
Texas_Dunsmoor	US	45	64	23	22	23.47 (4.51)	NA
USP_Diniz	BR	55	58	27	28	35.56 (10.97)	13.13 (4.1)

AU, Australia; BR, Brazil; CA, Canada; GE, Germany; NA, Not available; NL, The Netherlands; SP, Spain; SW, Sweden; UK, United Kingdom, US, United States. Note: To be included in the normative modelling analysis each participant had to have all essential data (age, sex) available, samples had to have control participants and larger samples required both genders available. These reasons lead to the exclusion of the entire Austin_Cisler and Vanderbilt_Kaczkurkin datasets, as well as 7 additional participants. The Bielefeld_Lonsdorf_sample_3 was not approved for inclusion in the normative modelling analysis. Thus, a total of 177 fewer participants were included in the normative modelling analysis.

Sample	CS+/ CS- (n/n)	CS+ trials (n)	CS- trials (n)	Average ITI (s)	Average ISI (s)	Reinf. rate (%)	CS type	Type of US	US confound	Assessment of awareness	Preconditioning phase
Amsterdam_Visser/Kindtsample_1	2/2	22	22	22000	6000	55	Neutral faces & pictures	Electric shock	no	yes	yes
Amsterdam_Visser/Kindtsample_2	2/2	22	22	20000	4000	55	Neutral faces & pictures	Electric shock	no	yes	yes
Amsterdam_Visser/Kindtsample_3	2/2	18	18	17500	4000	56	Neutral faces & pictures	Electric shock	no	yes	yes
Amsterdam_Visser/Kindtsample_4	2/2	18	18	17500	4000	56	Neutral faces & pictures	Electric shock	no	yes	yes
Amsterdam_Visser/Kindt_sample_5	2/2	18	18	10350	4000	56	Neutral faces & pictures	Electric shock	no	yes	yes
Amsterdam_Visser/Kindt_sample_6	2/2	18	18	10350	4000	56	Neutral faces & pictures	Electric shock	no	yes	yes
Amsterdam_Visser/Kindt_sample_7	2/2	18	18	4650	4000	56	Neutral faces & pictures	Electric shock	no	yes	yes
Amsterdam_Visser/Kindt_sample_8	2/2	18	18	17500	4000	56	Neutral faces & pictures	Electric shock	no	yes	yes
Amsterdam_Visser/Kindt_sample_9	2/2	22	22	20000	4000	55	Neutral faces & pictures	Electric shock	no	yes	yes
Austin_Cisler	1/1	18	18	4000	2500	50	Neutral pictures	Electric shock	no	yes	yes

Table 2. Characteristics of the fear conditioning tasks for each sample.

Barcelona_Cardoner	1/1	32	32	5891	1900	50	Neutral pictures	Auditory stimulus	no	yes	yes
Barcelona_Soriano_sample_1	2/1	16	16	15000	5800	62.5	Neutral pictures	Electric shock	yes	yes	yes
Barcelona_Soriano_sample_2	1/1	15	10	12000	1750	33	Neutral pictures	Electric shock	no	yes	yes
Bielefeld_Lonsdorf_sample_1	1/1	14	14	13000	6800	100	Neutral pictures	Electric shock	yes	yes	yes
Bielefeld_Lonsdorf_sample_2	1/1	14	14	13000	7000	100	Neutral pictures	Electric shock	yes	no	yes
Bielefeld_Lonsdorf_sample_3	2/2	18	18	10000	7000	100	Grey fractals	Electric shock	yes	yes	yes
Bochum_Elsenbruch	1/1	8	8	25000	9000	100	Neutral pictures	Other*	yes	yes	no
Bochum_Merz_sample_1	2/1	16	8	10750	8000	62.5	Neutral pictures	Electric shock	no	yes	no
Bochum_Merz_sample_2	2/1	16	8	10750	8000	62.5	Neutral pictures	Electric shock	no	yes	no
Bochum_Merz_sample_3	1/1	21	21	12000	8000	100	Neutral pictures	Electric shock	yes	yes	no
Bochum_Merz_sample_4	2/1	16	8	10062	6000	62.5	Neutral pictures	Electric shock	no	yes	no
Bochum_Merz_sample_5	1/1	16	16	10750	8000	62.5	Neutral pictures	Electric shock	no	yes	no

Bochum_Merz_sample_6	2/1	16	8	10062	6000	62.5	Neutral pictures	Electric shock	no	yes	no
Columbia_Neria	1/2	15	30	3600	4000	80	Neutral pictures	Electric shock	yes	no	yes
Duke_LaBar_sample_1	2/2	20	20	5750	6000	50	Avatars with neutral faces	Electric shock	yes	no	yes
Duke_LaBar_sample_2	1/1	16	16	15900	4000	31	VR affective pictures	Electric shock	yes	no	yes
Florida_Keil	1/1	29	20	7000	5100	25	Gabor patches	Electric shock	yes	yes	yes
Harvard_McLaughlin	1/1	8	4	20000	1500	40	Neutral pictures	Auditory stimulus	no	no	no
Manitoba_Greening_sample_1	1/1	24	24	12000	6000	50	Gabor patches	Electric shock	no	no	yes
Manitoba_Greening_sample_2	1/1	24	24	12000	3995	50	Gabor patches	Electric shock	no	no	yes
Melbourne_Harrison	1/1	15	10	12000	1950	33	Neutral pictures	Auditory stimulus	no	yes	yes
Munich_Koch	1/1	8	8	12000	12000	50	Affective faces and pictures	Electric shock	yes	no	no
Munster_Moeck_sample_1	1/1	27	27	5750	300	33	Neutral faces	Auditory stimulus	no	yes	yes
Munster_Moeck_sample_2	1/1	27	27	5750	300	33	Neutral faces	Auditory stimulus	no	yes	yes

Reading_Reekum_sample_1	1/1	12	12	10530	500	100	Neutral pictures	Auditory stimulus	yes	no	no
Reading_Reekum_sample_2	1/1	12	12	10530	500	100	Neutral pictures	Auditory stimulus	yes	no	no
MGH_Tuominen_sample_1	2/1	16	16	15000	6000	62.5	Neutral pictures	Electric shock	yes	no	no
MGH_Tuominen_sample_2	1/1	8	8	15000	6000	62.5	Neutral faces	Electric shock	yes	no	no
USP_Diniz	2/1	16	16	15000	3000	62.5	Neutral pictures	Electric shock	yes	yes	no
Texas_Dunsmoor	1/1	24	24	6000	5000	50	Other**	Electric shock	yes	no	no
Ulm_Abler	2/1	80	20	variable	2500	50	Neutral pictures	Thermal stimulus	no	no	no
Uppshala_Ahs	1/1	16	16	14000	6000	50	Humanoid characters	Electric shock	yes	yes	yes
Vanderbilt_Kaczkurkin	2/1	15	30	3600	3900	80	Neutral pictures	Electric shock	yes	yes	yes

CS, conditioned stimulus; CS+, CS followed by unconditioned stimulus; CS –, CS not followed by unconditioned stimulus; CS+/CS-, Number of different CS+ and CS-; ITI, intertrial interval; ISI, inter-stimulus interval; Reinf., Reinforcement, US=Unconditioned stimulus. All samples used visual conditioned stimuli. All samples included an independent assessment of conditioning (e.g., skin conductance responses) except Amsterdam_Visser/Kindt_1. For all samples, the fMRI contrast (CS+ > CS-) included either all CS+ trials (with US present) or all CS+ trials without the US, along with all CS- trials. Exceptions included Barcelona_Cardoner, Duke_LaBar_sample_1, and Duke_LaBar_sample_2, which only included trials from an early conditioning phase (n = 4CS+/4CS-, 5CS+/5CS-, and 8CS+/8CS- trials, respectively). *Rectal distension. ** Typical exemplars.

Sample	Ν	Age M (SD)	Females (%)	Medication (%)	Comorbidity (%)	GAD (n)	MDD (n)	OCD (n)	PTSD (n)	SAD (n)	PD (n)	SP (n)
Austin_Cisler	61	33.72 (8.48)	100	59.02	67.21	0	0	0	61	0	0	0
Barcelona_Cardoner	26	23.88 (4.78)	61.54	3.85	11.54	26	0	0	0	0	0	0
Barcelona_Soriano_sample_1	18	40.56 (11.91)	61.11	88.89	50	0	0	18	0	0	0	0
Barcelona_Soriano_sample_2	25	25.56 (3.68)	64	0	16	21	0	0	0	4	0	0
Columbia_Neria	30	35.07 (13.82)	33.33	0	80	0	0	0	30	0	0	0
Harvard_McLaughlin	14	14.57 (2.14)	50	0	0	1	0	0	3	1	2	7
Melbourne_Harrison	37	19.89 (2.31)	51.35	0	56.76	0	11	0	0	26	0	0
Munich_Koch	22	33.55 (13.59)	59.09	54.55	27.27	0	0	22	0	0	0	0
USP_Diniz	28	33.68 (8.09)	53.57	0	71.43	0	0	28	0	0	0	0
Texas_Dunsmoor	22	25.95 (5.04)	68.18	NA	0	0	0	0	22	0	0	0
Vanderbilt_Kaczkurkin	28	34.57 (9.36)	0	3.57	32.14	0	3	0	25	0	0	0
Total n/M	31 1	29.91 (10.75)	58.84	21.22	44.05	48	14	68	141	31	2	7

Table 3. Characteristics of individuals with anxiety-related and depressive disorders included in the analyses.

Data refer to primary mental health diagnoses. "'Comorbidity' refers to the presence of at least one additional mental disorder. Data on comorbidity were not included in the analyses. GAD=Generalized Anxiety Disorder, MDD=Major Depressive Disorder, NA=Not available, OCD=Obsessive-Compulsive Disorder, PD=Panic Disorder; PTSD=Post-traumatic Stress Disorder, SAD=Social Anxiety Disorder; SP=Specific Phobia.

Figure 1. Neural correlates and individual-level heterogeneity in human fear conditioning. Schematic indicating the levels of analysis (a). Significant brain functional activation (b) and deactivation (c) to the CS+ versus CS- determined by megaanalysis (n=1888 healthy controls). Schematic of normative modelling framework (d). Normative probability maps illustrate the percentage of participants in the healthy control test sample who had positive (hot colours -right) or negative deviations (cool colours - left) >±2.6 within each voxel. Circle highlights frequent large deviations (both positive and negative) within the most ventral region of the vmPFC (e). Abbreviations: AIC, anterior insular cortex; AG, angular gyrus; CN, caudate nucleus; dACC, dorsal anterior cingulate cortex; dIPFC, dorsolateral prefrontal cortex; dPFC, dorsal prefrontal cortex; dPons, dorsal pons; dPrec, dorsal precuneus; Hipp, hippocampus; HYP, hypothalamus; IOFC, lateral orbitofrontal cortex; PCC, posterior cingulate cortex; SI, primary somatosensory cortex; SII, secondary somatosensory cortex; SMA, supplementary motor area; TG, temporal gyrus; Thal, thalamus; vmPFC, ventromedial prefrontal cortex.

Figure 2. Robust influence of task variables on brain activation during fear conditioning. Maps show the influence of pretask instructions about CS-US contingency (a), type of US (b), number of CS used in paradigm (i.e. multiple CS+ or CS- or single CS+ or CS-) (c), reinforcement rate (d), and potential US confounding in CS+ > CS- contrast (e) on mean activation (left; mega-analysis linear mixed-effects models) and relation to predicted activation (right; normative model structure coefficients). Structure coefficient maps show the correlation coefficients (rho) thresholded by their respective coefficients of determination (rho2 > 0.3) of selected task variables. This can be interpreted as showing how predicted activation to the CS+ > CS- contrast relates to the task variables included in the building of the normative models. Positive correlations (warm colours) indicate greater activation for higher values of the input variable and negative correlations (cool colours) greater activation for lower values of the input variable (note that some variables are dummy coded, e.g. pre-task instructions, type of US).CS=Conditioned Stimulus; US=Unconditioned Stimulus. For Reinforcement Rate (RR) in linear mixed-effects models, the figure shows significant results in the ANOVA comparing four categories (RR30, RR50, RR62, RR100). For the results of post-hoc tests, see Supplementary Figures S5 and S6.

Figure 3. Differences between individuals with anxiety-related and depressive disorders and healthy controls in

human fear conditioning. Regions wherein individuals with anxiety-related and depressive disorders (n=311) (a) showed significantly increased functional activation to the CS+ versus CS-, as compared to healthy controls. Normative probability maps illustrate the percentage of participants of the sample (test controls - top; individuals with anxiety-related and depressive disorders - bottom) who had positive (hot colours - right) or negative deviations (cool colours - left) > \pm 2.6 within each voxel (b). Box plots show frequency (median line) of the total number of large deviations (> \pm 2.6) per clinical group. Whiskers show \pm 1.5 times interquartile range (c). Normative probability maps illustrate the percentage of each clinical group who had positive (hot colours - left) > \pm 2.6 within each voxel (d). Confusion matrix for multi-class support vector differentiating patterns of deviations among clinical groups (e). Abbreviations: GAD, Generalised Anxiety Disorder; OCD, Obsessive Compulsive Disorder; PTSD, Post-traumatic Stress Disorder; SAD, Social Anxiety Disorder.

References

- 1. Beckers, T. *et al.* Understanding clinical fear and anxiety through the lens of human fear conditioning. *Nat. Rev. Psychol.* **2**, 233–245 (2023).
- Lonsdorf, T. B. *et al.* Don't fear 'fear conditioning': Methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear. *Neurosci. Biobehav. Rev.* 77, 247–285 (2017).
- 3. Fullana, M. A. *et al.* Neural signatures of human fear conditioning: an updated and extended meta-analysis of fMRI studies. *Mol. Psychiatry* **21**, 500–8 (2016).
- 4. Tovote, P., Fadok, J. P. & Lüthi, A. Neuronal circuits for fear and anxiety. *Nat. Rev. Neurosci.* **16**, 317–331 (2015).
- 5. LeDoux, J. The amygdala. Curr. Biol. 17, R868–R874 (2007).
- Johansen, J. P., Cain, C. K., Ostroff, L. E. & LeDoux, J. E. Molecular Mechanisms of Fear Learning and Memory. *Cell* 147, 509–524 (2011).
- 7. Bechara, A. *et al.* Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. *Science* **269**, 1115–8 (1995).
- Wen, Z. *et al.* Temporally and anatomically specific contributions of the human amygdala to threat and safety learning. *Proc. Natl. Acad. Sci. U. S. A.* 119, e2204066119 (2022).
- Visser, R. M., Bathelt, J., Scholte, H. S. & Kindt, M. Robust BOLD Responses to Faces But Not to Conditioned Threat: Challenging the Amygdala's Reputation in Human Fear and Extinction Learning. *J. Neurosci.* 41, 10278–10292 (2021).
- Bach, D. R., Weiskopf, N. & Dolan, R. J. A Stable Sparse Fear Memory Trace in Human Amygdala. *J. Neurosci.* 31, 9383–9389 (2011).
- Fullana, M. A. *et al.* Amygdala where art thou? *Neurosci. Biobehav. Rev.* 102, 430–431 (2019).
- Morriss, J., Hoare, S. & van Reekum, C. M. It's time: A commentary on fear extinction in the human brain using fMRI. *Neurosci. Biobehav. Rev.* 94, 321–322 (2018).
- 13. Lonsdorf, T. B. & Merz, C. J. More than just noise: Inter-individual differences in fear acquisition, extinction and return of fear in humans Biological, experiential,

temperamental factors, and methodological pitfalls. *Neurosci. Biobehav. Rev.* **80**, 703–728 (2017).

- 14. Radua, J. *et al.* Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA. *Neuroimage* **218**, 116956 (2020).
- Müller, V. I. *et al.* Ten simple rules for neuroimaging meta-analysis. *Neurosci. Biobehav. Rev.* 84, 151–161 (2018).
- 16. Thompson, P. M. *et al.* ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide. *Neuroimage* **145**, 389–408 (2017).
- Sjouwerman, R., Scharfenort, R. & Lonsdorf, T. B. Individual differences in fear acquisition: multivariate analyses of different emotional negativity scales, physiological responding, subjective measures, and neural activation. *Sci. Rep.* 10, 15283 (2020).
- 18. Segal, A. *et al.* Embracing variability in the search for biological mechanisms of psychiatric illness. *Trends Cogn. Sci.* (2024). doi:10.1016/j.tics.2024.09.010
- Pittig, A., Treanor, M., LeBeau, R. T. & Craske, M. G. The role of associative fear and avoidance learning in anxiety disorders: Gaps and directions for future research. *Neurosci. Biobehav. Rev.* 88, 117–140 (2018).
- Fullana, M. A. *et al.* Human fear conditioning: From neuroscience to the clinic. *Behav. Res. Ther.* 124, 103528 (2020).
- Greco, J. A. & Liberzon, I. Neuroimaging of Fear-Associated Learning. *Neuropsychopharmacology* 41, 320–334 (2016).
- 22. Craske, M. G. et al. Anxiety disorders. Nat. Rev. Dis. Prim. 3, 17024 (2017).
- Marin, M.-F., Hammoud, M. Z., Klumpp, H., Simon, N. M. & Milad, M. R. Multimodal Categorical and Dimensional Approaches to Understanding Threat Conditioning and Its Extinction in Individuals With Anxiety Disorders. *JAMA Psychiatry* 77, 618 (2020).
- Kausche, F. M., Carsten, H. P., Sobania, K. M. & Riesel, A. Fear and Safety Learning in Anxiety Spectrum Disorders: An Updated Meta-Analysis. (2024). doi:10.31234/osf.io/qb5dh
- 25. Suarez-Jimenez, B. et al. Neural signatures of conditioning, extinction learning, and

extinction recall in posttraumatic stress disorder: a meta-analysis of functional magnetic resonance imaging studies. *Psychol. Med.* **50**, 1442–1451 (2020).

- Savage, H. S., Davey, C. G., Fullana, M. A. & Harrison, B. J. Threat and safety reversal learning in social anxiety disorder - an fMRI study. *J. Anxiety Disord.* 76, 102321 (2020).
- 27. Savage, H. S. *et al.* Neural mediators of subjective and autonomic responding during threat learning and regulation. *Neuroimage* **245**, 118643 (2021).
- Blackford, J. U., Allen, A. H., Cowan, R. L. & Avery, S. N. Amygdala and hippocampus fail to habituate to faces in individuals with an inhibited temperament. *Soc. Cogn. Affect. Neurosci.* 8, 143–50 (2013).
- Bas-Hoogendam, J. M. *et al.* Impaired neural habituation to neutral faces in families genetically enriched for social anxiety disorder. *Depress. Anxiety* 36, 1143–1153 (2019).
- 30. Morris, S. E. et al. Revisiting the seven pillars of RDoC. BMC Med. 20, 220 (2022).
- 31. Pessoa, L. How many brain regions are needed to elucidate the neural bases of fear and anxiety? *Neurosci. Biobehav. Rev.* **146**, 105039 (2023).
- Poldrack, R. A. Inferring Mental States from Neuroimaging Data: From Reverse Inference to Large-Scale Decoding. *Neuron* 72, 692–697 (2011).
- Armand, S. *et al.* Functional brain responses to emotional faces after three to five weeks of intake of escitalopram in healthy individuals: a double-blind, placebocontrolled randomised study. *Sci. Rep.* 14, 3149 (2024).
- 34. Shackman, A. J. & Fox, A. S. Two Decades of Anxiety Neuroimaging Research: New Insights and a Look to the Future. *Am. J. Psychiatry* **178**, 106–109 (2021).
- Wen, Z., Marin, M.-F., Blackford, J. U., Chen, Z. S. & Milad, M. R. Fear-induced brain activations distinguish anxious and trauma-exposed brains. *Transl. Psychiatry* 11, 46 (2021).
- American Psychiatric Association. *Diagnostic and Statistical Manual of Mental Disorders*. (American Psychiatric Association, 2013). doi:10.1176/appi.books.9780890425596
- 37. Kaczkurkin, A. N. et al. Neural Substrates of Overgeneralized Conditioned Fear in

PTSD. Am. J. Psychiatry 174, 125–134 (2017).

- Cooper, S. E. & Dunsmoor, J. E. Fear conditioning and extinction in obsessivecompulsive disorder: A systematic review. *Neurosci. Biobehav. Rev.* 129, 75–94 (2021).
- Milad, M. R. *et al.* Deficits in conditioned fear extinction in obsessive-compulsive disorder and neurobiological changes in the fear circuit. *JAMA psychiatry* **70**, 608–18; quiz 554 (2013).
- 40. Apergis-Schoute, A. M. *et al.* Neural basis of impaired safety signaling in Obsessive Compulsive Disorder. *Proc. Natl. Acad. Sci. U. S. A.* **114**, 3216–3221 (2017).
- 41. Cano, M. *et al.* Neural correlates of fear conditioning and fear extinction and its association with cognitive-behavioral therapy outcome in adults with obsessive-compulsive disorder. *Behav. Res. Ther.* **144**, 103927 (2021).
- 42. Hearne, L. J. *et al.* Revisiting deficits in threat and safety appraisal in obsessivecompulsive disorder. *Hum. Brain Mapp.* **44**, 6418–6428 (2023).
- Fan, J. *et al.* Spontaneous neural activity in the right superior temporal gyrus and left middle temporal gyrus is associated with insight level in obsessive-compulsive disorder. *J. Affect. Disord.* 207, 203–211 (2017).
- 44. Westlin, C. *et al.* Improving the study of brain-behavior relationships by revisiting basic assumptions. *Trends Cogn. Sci.* **27**, 246–257 (2023).
- Klingelhöfer-Jens, M., Ehlers, M. R., Kuhn, M., Keyaniyan, V. & Lonsdorf, T. B. Robust group- but limited individual-level (longitudinal) reliability and insights into cross-phases response prediction of conditioned fear. *Elife* 11, (2022).
- 46. Savage, H. S. *et al.* Dissecting task-based fMRI activity using normative modelling: an application to the Emotional Face Matching Task. *Commun. Biol.* **7**, 888 (2024).
- Bas-Hoogendam, J. M. *et al.* ENIGMA-anxiety working group: Rationale for and organization of large-scale neuroimaging studies of anxiety disorders. *Hum. Brain Mapp.* 43, 83–112 (2022).
- Lonsdorf, T. B. *et al.* Don't fear 'fear conditioning': Methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear. *Neurosci. Biobehav. Rev.* 77, 247–285 (2017).

- 49. Spielberger, C. D. ., Gorsuch, R. L. & Lushene, R. *Manual of the State/ Trait Anxiety Questionnaire (STAI)*. (TEA Editions, 1982).
- 50. BECK, A. T., WARD, C. H., MENDELSON, M., MOCK, J. & ERBAUGH J. An Inventory for Measuring Depression. *Arch. Gen. Psychiatry* **4**, 561 (1961).
- 51. Waller, L. *et al.* ENIGMA HALFpipe: Interactive, reproducible, and efficient analysis for resting-state and task-based fMRI data. *Hum. Brain Mapp.* **43**, 2727–2742 (2022).
- 52. Gorgolewski, K. *et al.* Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python. *Front. Neuroinform.* **5**, (2011).
- Shinohara, R. T. *et al.* Statistical normalization techniques for magnetic resonance imaging. *NeuroImage Clin.* 6, 9–19 (2014).
- 54. Rolls, E. T., Huang, C.-C., Lin, C.-P., Feng, J. & Joliot, M. Automated anatomical labelling atlas 3. *Neuroimage* **206**, 116189 (2020).
- 55. Fraza, C. J., Dinga, R., Beckmann, C. F. & Marquand, A. F. Warped Bayesian linear regression for normative modelling of big data. *Neuroimage* **245**, 118715 (2021).
- 56. Wolfers, T. *et al.* Mapping the Heterogeneous Phenotype of Schizophrenia and Bipolar Disorder Using Normative Models. *JAMA psychiatry* **75**, 1146–1155 (2018).
- Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. *J. R. Stat. Soc. Ser. B Stat. Methodol.* 57, 289–300 (1995).
- Kraha, A., Turner, H., Nimon, K., Zientek, L. R. & Henson, R. K. Tools to support interpreting multiple regression in the face of multicollinearity. *Front. Psychol.* 3, 44 (2012).
- 59. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. (2012).

COMPETING INTERESTS

Dr Stein has received consultancy honoraria from Discovery Vitality, Johnson & Johnson, Kanna, L'Oreal, Lundbeck, Orion, Sanofi, Servier, Takeda and Vistagen. The other authors declare no competing interests.

ACKNOWLEDGEMENTS

The research was supported by Secretaria d'Universitats i Recerca del Departament d'Economia i Coneixement de la Generalitat de Catalunya (No. 2021 SGR 1128, J.R.; M.A.F.), the Swedish Research Council (No. 2014-01160, F.Å.), the European Research Council (No. 648176, T.B.; ERC-2018 CoG-816564, D.B.; 101001118, A.F.M.), the National Institute of Mental Health (No. R01MH119132 and MH108753, J.C.; R01MH095904 and K23MH076054, D.J.H.; R01MH125615, A.K.; R01-MH103291, K.A.M.; 1R61MH129559-02, Y.N.; R01-AA031261, A.S.; K01MH122774, X.Z.; R01MH131532, B.S.J; R01MH125615, L.A.), the German Research Foundation (No. 316803389 - SFB 1280, S.E., C.J.M. and A.I.; LO 1980/1-1 and SFB TRR 58 subproject B07, T.B.L.; LO 1980/4-1, T.B.L. and M.R.E.; 521379614 - TRR393, B.S., U.D. and T.K.; 44541416 CRC-TRR58 T.S., K.R., K.D. and M.J.; 442075332 (RU 5187) and 461947532 (RU 5389), U.L.; WA 1539/11-1, H.W.;), the Economic and Social Research Council UK (No. ES/W000776/1, D.B.), the NSERC Discovery (No. RGPIN-2021-02906, S.G.), the National Institute of Health (No. R01 MH106574, C.L.; R01 MH122387, J.D.), the United states-israel binational science foundation and NIA (No. 2P30AG064198, Y.N.), the National Institute of Mental Health Intramural Research (No. ZIA-MH-002781, D.P.), the Biotechnology and Biological Sciences Research Council (No. BB/L02697X/1, C.vR.), NIAAA (No. R01-AA030042, A.S.), the Instituto de Salud Carlos III (ISCIII) (No. PI16/00889 and PI19/01171, C.S.M.; FI22/00219, M.O.), Fundació Marató de TV3 (No. 202201-31, C.S.M.), Agència de Gestió d'Ajuts Universitaris i de Recerca (No. 2021SGR01017, C.S.M.), the Ministerio de Ciencia, Innovación y Universidades, Spain (No. PID2022-1390810B-C22, C.S.M.), the Department of Veteran Affairs (No. I01-CX002760, D.M.S.), the German Federal Ministry of Education and Research (No. 01EE1402E, B.S., T.K., A.P., U.D., K.D. and H-U.W.; 01EE2101, U.L.), Brain and Behavior Research Foundation NARSAD Young Investigator Award (X.Z.), "la Caixa" Foundation (No. LCF/BQ/IN17/11620071, V.P.A.), Spanish Ministry of Science, Innovation and Universities (No. JDC2022-048445-I, V.P.A), the National Eye Institute Core Grant (No. P30 EY001319, B.S.J.), the Medical Research Council (No. MR/J003980/1, J.M.), National Science Foundation Graduate Research Fellowship (No. DGE1745303, S.N.D.), the South African Medical Research Council (D.J.S.), the EU Innovative Medicines Initiative (IMI) 2 Joint Undertaking (IMI2 JU) (No. 101034377, N.JA.VdW), the Dutch Research Agenda (NeuroLabNL-Small Projects for NWA routes 21/22) (No. NWA.1418.22.025, JM.B-H.), the Talent Acceleration grant (Medical Delta) (JM.B-H.), the NIH Big Data to Knowledge (BD2K) award (No. U54 EB020403 and R01MH131806, P.M.T.), the National Health and Medical Research Council of Australia (NHMRC) Project Grants (No. 1161897 and 1145010, B.J.H.).

- Supplementary Materials
 2

	Page
Changes with respect to pre-registration	2
Variables collected and not included in analyses	3
Supplementary Methods	3
Non-imaging data	3
Neuroimaging data	5
Statistical analyses	5
Supplementary Results	8
Supplementary Tables	12
Supplementary Figures	17
<u>References</u>	29

18 Changes with respect to pre-registration

- 19 As noted in the main text, both the mega-analysis (<u>https://osf.io/7n953</u>) and
- 20 normative modeling analysis (<u>https://osf.io/w74bt</u>) were pre-registered.
- 21
- 22 The following changes were made after pre-registration:
- 1. At the time of pre-registration, we had collected data from 43 samples. We
- excluded one sample (n=22) because it employed a "multi-CS" conditioning
- paradigm (36 CS+, 18 CS-) which is difficult to compare with the other experiments
 included.
- 27 2. For the mega-analysis, we used pre-scaling instead of Combat to reduce site-
- related heterogeneity (see "Pre-scaling" in page 5).
- 29
- 30 The normative modelling analysis plan was updated to best complement the meta-
- analysis approach and thus the following changes were made after pre-registration:
- 1. Sample size. The participants included were a subset of the final sample used in
- the meta-analysis, for whom all required data were available.
- 34 2. Variables included. The variables used were matched to those included in the
- 35 mega-analysis study to facilitate a better comparison between the results of these
- 36 complementary methods
- 37 3. Analysis plan. Research question 1A. We chose not to create models for separate ROIs. Research question 1C. We did not perform whole-brain sparse canonical 38 39 correlation analysis to determine how deviations in task activation predicted outcome 40 measures, rather, we chose statistical approaches more appropriate to the type of 41 data. We did not perform the analysis linking deviation scores to US aversiveness as 42 this was not performed in the meta-analysis. Research question 2B. Again, we did 43 not perform whole-brain sparse canonical correlation analysis, for the same reasons as mentioned above. We did not perform analyses on transdiagnostic scales with 44 45 insufficient sample sizes (e.g., Beck Anxiety Inventory, Hamilton-Anxiety, Hamilton-Depression) and similarly excluded small diagnostic groups from relevant analyses. 46 47 We did not use a clustering method.
- 48
- 49
- 50
- 51

52	
53	Variables collected and not included in analyses
54	The following variables were collected but not included in the analyses because the
55	data collected were insufficient, or too heterogeneous to be aggregated: IQ,
56	comorbidity, ethnicity, and years of education. Descriptive data on years of education
57	and comorbidity for the samples with available data are reported in Tables 1 and 3 of
58	the main manuscript.
59	
60	Supplementary Matheda
62	Supplementary methods
63	Non-imaging data
64	Harmonization of trait anxiety scores
65	As noted in the main text, we conducted the analysis of the State-Trait Anxiety
66	Inventory-Trait version (STAI-T) scores using both raw and harmonized scores.
67	To harmonize the STAI-T scores, we took the following steps, we first assessed the
68	potential variability of STAI-T scores across versions, languages, or countries, by
69	conducting a meta-analysis of the mean STAI-T scores reported in the normative
70	studies ^{1–11} as well as a meta-analysis of the reported standard deviations. In both
71	analyses, substantial heterogeneity between studies was observed (P statistic for the
72	mean: 99%; P statistic for the standard deviation: 95%, Q test p<0.001 in both
73	cases). This heterogeneity indicates significant differences in the reported means
74	and standard deviations between studies. We then examined potential moderators of
75	this heterogeneity, including the version of the STAI-T (X or Y), language, and
76	country. The results revealed statistically significant differences in the mean and
77	standard deviation across countries (p=0.014 and 0.001, respectively) and in the
78	mean across languages (p=0.012) but not on the version of the STAI-T.
79	
80	
81	
82	
83	
84	
85	

		Mean		Log SD	
		Estimate (95%CI)	Ρ	Estimate (95%CI)	Р
Version	Х	41.2 (36.9-45.4)	n.s.	2.36 (2.31-2.41)	n.s.
	Y	39.2 (36.4-42.0)		2.22 (2.09-2.35)	
Language	Dutch	35.2 (33.0-37.5)	0.012	2.23 (1.97-2.48)	0.353
	English	38.0 (35.7-40.4)		2.17 (2.01-2.32)	
	French	41.9 (40.7-43.1)		2.15 (2.05-2.25)	
	German	43.0 (41.0-44.9)		2.39 (2.36-2.42)	
	Japanese	46.8 (44.6-49.1)		2.43 (2.29-2.57)	
	Spanish	46.2 (37.5-55.0)		2.32 (2.25-2.39)	
Country	America	36.5 (33.9-39.1)	0.014	2.13 (1.88-2.39)	0.001
	Australia	36.4 (35.8-37.0)		2.41 (2.37-2.45)	
	England	41.1 (36.1-46.2)		2.02 (1.79-2.25)	
	France	41.9 (40.7-43.1)		2.15 (2.05-2.25)	
	Germany	43.0 (41.0-44.9)		2.39 (2.36-2.42)	
	Japan	46.8 (44.6-49.1)		2.43 (2.29-2.57)	
	Netherlands	35.2 (33.0-37.5)		2.23 (1.97-2.48)	
	Spain	46.2 (37.5-55.0)		2.32 (2.25-2.39)	

87

88 These findings suggest that the observed heterogeneity in STAI-T scores is partly

89 explained by country (or language) differences in the included studies. We could not

separate the effects of "country" and "language" because each language

91 corresponded to one country, except for English (which corresponded to America,

Australia, and England). However, given that "country" better explained the
heterogeneity and that we expected cultural differences among English-speaking
countries, we decided to harmonize STAI-T scores based on country (rather than
language). The harmonization was conducted with ComBat for ENIGMA¹² (see
expanded code in the GitHub repository):

```
97
98
```

```
99
100
```

```
101
102
```

103

104

105

106 Quality control

i controls = which(X\$patient == 0)

combat = combat fit(X\$stai[i controls],

age sex = cbind(X\$age, X\$sex)

107 Three investigators (EV, HS, MAF) independently performed quality control of the 108 non-imaging data and contacted the sites for additional information when necessary.

n.min = 8, impute missing cov = TRUE)

X\$stai = combat apply(combat, X\$stai, site = X\$country, cov = age sex)\$dat

site = X\$country[i controls], cov = age sex[i controls,],

109

110 Neuroimaging data

111 Quality control

112 Data were collected from 2448 participants. In addition to quality control using

- 113 HALFpipe, which excluded 229 individuals (Sup. Table S3), two investigators (EV,
- HS) independently reviewed all neuroimaging data, which excluded 20 additional
- 115 participants. Two of the included samples (Manitoba_Greening_sample_1 and
- 116 Manitoba_Greening_sample_2) were analyzed in different runs. For these samples,
- 117 we used the average of all runs to obtain the main contrast. One sample
- 118 (Harvard_McLaughlin) was analyzed using blocks; due to the short interval-stimulus-
- 119 interval (ISI), individual events could not be reliably obtained.

120

121 Statistical analyses. Mega-analyses

- 122 Pre-scaling
- 123 As noted in the main text, after processing with HALFpipe, we observed differences
- 124 in the BOLD response between sites. Such variability exceeded the expected small
- 125 normally distributed differences typically addressed by site-harmonizing mixed-

126 effects models such as ComBat¹². To remove these differences, we performed a prescaling step that consisted of dividing the BOLD response of individuals from each 127 128 site by their standard deviation. The use of such standardized scores is common in 129 many areas of psychology and neuroscience. Specifically, for each voxel with brain 130 coverage across all sites, we estimated the standard deviation using linear models 131 with appropriate covariates (see below). We then calculated the median of the 132 standard deviations across these voxels and divided all images in the sample by this standard deviation. We have included this step in the "combat.enigma" package¹² in 133 134 R for use by other groups. Following recommendations for between-site harmonization (see below), we estimated the standard deviations exclusively using 135 136 data from healthy controls.

137

138 A note about the use of *z*-statistics in mega-analyses

HALFpipe generates "z-statistic images", and one may (wrongly) assume that these 139 140 z-statistic images are equivalent to z-scores. However, z-statistic images are 141 calculated by dividing each participant's mean BOLD response (to different trials) by 142 its standard error rather than by the standard deviation across participants. Thus, 143 critically, these z-statistic images mix the task-related BOLD response with its standard error. This is not inherently wrong, but it means that differences in z-144 145 statistics between cases and controls may be due not only to differences in the task-146 related BOLD response but also to differences in its standard error.

These differences in standard error could be unrelated to the task, for example, due to differences in the amplitude of BOLD signal fluctuations. In the following R code, we simulated a study comparing the task-related BOLD response between cases and controls, with no actual differences in the task-related BOLD response but differences in its standard error. As expected, the t-tests comparing the groups show no differences in the task-related BOLD response. However, they do show statistically significant differences in within-subject z-scores.

154

155

```
# Create a task time-series design matrix
design = rep(c(rep(0:1, 20), 0), each = 8)
dat = NULL
# For each group
for (group in c("patient", "control")) {
  # For each individual in the group
 for (i in 1:30) {
    # Simulate the BOLD signal with the same BOLD response but more noise
    # in patients
   ts = rnorm(length(design), design, ifelse(group == "patient", 1.2, 1))
    # Simplified analysis to estimate the task-related BOLD response
   m = summary(lm(ts ~ design))$coefficients[2,]
    # Save the individual task-related BOLD response and z-statistic
   dat = rbind(dat, data.frame(
     group,
     bold_response = m[1],
     z statistic = m[1] / m[2]
   ))
 }
}
# Conduct t-tests to compare patients and controls
t.test(dat$bold response ~ dat$group)
t.test(dat$z statistic ~ dat$group)
```

157 In other words, we do not know whether differences in z-statistics are related 158 to differences in the task-related BOLD response or to differences in other aspects of the BOLD signal that may be unrelated to the task. Indeed, we examined whether 159 160 cases (individuals with anxiety-related and depressive disorders) and controls in this study might have different standard errors of the fear conditioning-related BOLD 161 162 response and found that they might. For each sample containing cases and controls, we calculated the standardized mean difference (Cohen's d) in standard error and then 163 averaged d across the samples. At a descriptive level, using a threshold of d≥0.2, 164 cases showed larger standard errors in the cerebellum, but smaller in the mid-165 cingulum (see figure). 166

168 Linear mixed-effects models

- To fit the models, we created a new function that, for each voxel, performs the followingsteps:
- 171 1) Assesses which participants and sites have information, taking into account the 172 specific brain coverage of each individual fMRI scan;
- 173 2) Detects and discards collinear or constant covariates, which can vary depending on174 the participants with information in that voxel;
- 3) Fits a linear mixed-effects model using the "Ime" function from the "nIme" R
 package¹³:
- 177 m = Ime(y ~ x, random = ~ 1 | sample)
- 178 or a simple linear model if the participants are from only one sample:

179 $m = Im(y \sim x)$

180 Where "m" is the model, "y" is the voxel value, "x" is a matrix with the variables of 181 interest and covariates, and "site" is a random intercept.

- 182 4) Tests the linear hypothesis if specified (e.g., for ANOVAs):
- 183 linearHypothesis(m, hypothesis)
- 184 where "m" is the model, and "hypothesis" is the hypothesis matrix.

5) Saves the results, including maps of sigma (the standard deviation estimated in the
model), the model coefficients, and z-statistics. We have included this function in the
"combat.enigma" R package.

We used cluster-based inference to correct for multiple testing. Specifically, we created clusters of voxels with Z≥3.1 and converted cluster sizes to cluster-wise pvalues using the Gaussian Random Field (GRF) theory, using the FSL utilities smoothest and cluster.

- 192
- 193
- 194
- 195
- 400
- 196 197

198 Supplementary Results

In the main text, we highlighted those variables with more robust effects (i.e.,
with at least moderate effect sizes in linear mixed-effects models and significant in
normative modeling analyses). Here we present the remaining significant
associations.

203

204 Sociodemographic variables

205 Older age was significantly associated with greater activation in the ventromedial 206 prefrontal cortex and medial temporal gyrus, as well as significantly less activation in 207 the anterior insula, pre-supplementary motor area extending to the dorsal anterior cingulate, dorsal caudate and bilateral supramarginal gyrus extending to the 208 posterior insula. Female participants (n=973) showed greater activation across the 209 210 visual cortex, and left medial/superior temporal gyrus than males (n=915). 211 Regression coefficients from the normative models indicated a minimal effect of age 212 on the predicted BOLD signal, but unthresholded effects largely replicated the findings of the mega-analysis. Structure coefficients from the normative models 213 214 showed minimal relation between sex and predicted BOLD signal, with only a very small cluster in the mid-anterior cerebellum predicted to show heightened activation 215

in females. These results are presented in **Sup. Figure S4**.

217

218 Task variables

The following task variables showed significant albeit small/weak associations with brain activation during conditioning (see **Sup. Figure S7** for the mega-analysis results and **Sup. Figure S8** for the structure coefficients of the normative modeling results). Normative modelling regression coefficient maps are also shown in **Sup.**

Figure S8 for completeness but are not discussed below.

The <u>number of trials during preconditioning</u> showed a significant positive association with activation in the inferior cerebellum in the mega-analysis. Structure coefficients did not show a relationship between the number of trials during preconditioning and predicted BOLD signal.

228 <u>Average intertrial-interval (ITI) length</u> demonstrated a significant positive 229 association with activation within the bilateral primary visual cortex and a significant 230 negative association with the bilateral posterior parietal cortex, and superior frontal

231 gyri extending to the supplementary motor area. Structure coefficients showed that increased average ITI was predictive of increased activation within the primary visual 232 233 cortex, dorsomedial prefrontal cortex, extending to the pre SMA, the bilateral 234 thalamus, caudate and putamen, the brainstem, and the anterior and medial 235 cerebellum, Conversely, a longer ITI predicted less activation (i.e., more 236 deactivation) within an expanse of the ventromedial prefrontal cortex, within the 237 dorsolateral prefrontal cortex, S1, the precuneus, the lingual gyrus and fusiform face area extending into bilateral middle gyri of the temporal lobe, and bilateral 238 239 hippocampus.

240 For the main results on type of US, please refer to the main text. In addition to 241 these main results, in normative modeling analyses, the use of a thermal stimuli as 242 US was predictive of decreased activation within the bilateral amygdala, the midcingulate cortex extending to the pre-supplementary motor area, the dorsomedial 243 244 prefrontal cortex, a posterior region of the ventromedial prefrontal cortex, the cuneus, 245 and (i.e., more deactivation) in the angular gyrus. The use of a visceral stimuli as US 246 had no influence on predicted BOLD signal during CS+>CS-. These two variables were not investigated separately using linear models. 247

248 In the mega-analysis, the type of CS (categorized as humanoid, affective pictures, and neutral faces) revealed significant effects. See full results at 249 https://zenodo.org/uploads/13933681. In normative modeling analyses, the use of a 250 251 humanoid CS was predictive of increased activation in the cingulate cortex, 252 extending to the dorsomedial prefrontal cortex and pre-supplementary motor area, 253 S2, dorsal precuneus, dorsolateral prefrontal cortex, the bilateral insula, the bilateral 254 temporoparietal junction, the thalamus, the caudate and the left anterior cerebellum, 255 as well as decreased activation (i.e. more deactivation) in the anterior ventromedial prefrontal cortex and posterior cingulate cortex. Moreover, the use of neutral pictures 256 257 as CS predicted more activation (i.e. less deactivation) in the anterior ventromedial prefrontal cortex and posterior cingulate cortex, and less activation within the 258 259 cingulate cortex, extending to the dorsomedial prefrontal cortex and pre-260 supplementary motor area, dorsal precuneus, S2, the bilateral insula, the bilateral 261 temporoparietal junction, the thalamus, the caudate and left anterior cerebellum Finally, the use of neutral faces as CS predicted more activation within the 262 263 subgenual anterior cingulate cortex, and less activation within the bilateral fusiform

face area and S2. The use of other types of CS (affective faces and pictures, a gabor
patch, a neutral male avatar, images of animals or tools, or of snakes and spiders)
did not have an influence on predicted BOLD signal.

Being unaware of the relationship between CS and US (i.e., contingency 267 unawareness; n=72) showed a positive association with activation in the ventral 268 269 posterior cingulate extending to the dorsal anterior cingulate/precuneus compared with being aware (n=1260). As contingency awareness was not available for all 270 271 participants this variable was not included in the construction of the normative 272 models, and therefore their relationship to predicted task (de)activation cannot be 273 assessed using structure coefficients. Rather, for participants in the two test samples 274 (controls + individuals with an anxiety or mood-related disorder) with these data 275 available (n = 703) we used a support vector classifier and found whole-brain deviation score could not be used to predict whether a participant was contingency 276 277 aware or not (mean accuracy = 50% + - 16%; p = 0.426; 10-fold cross validation; 278 1000 permutations).

279 In the mega-analysis, the number of CS+ included in the fMRI 280 contrast showed a significant positive association with activation in the left primary 281 visual cortex, right orbitofrontal cortex, right precuneus, right superior parietal lobule, and right dorsolateral prefrontal cortex. Moreover, the number of CS- included in the 282 fMRI contrast showed a significant positive association with activation in the left 283 284 superior parietal lobule and the right dorsolateral prefrontal cortex. US aversiveness ratings showed a significant positive association with activation in the right primary 285 visual cortex. Finally, the use of a preconditioning phase showed a negative 286 287 association with activation in the right medial prefrontal cortex. 288

- 289
- 290
- 291
- 292
- 293
- 294

295 Supplementary Tables

Supplementary Table S1. Descriptive statistics for STAI-T and BDI across samples.

Sample	STAI-T (n)	STAI-T M (SD)	STAI-T range	BDI (n)	BDI M (SD)	BDI range
Amsterdam_Visser_sample_1	18	35.33 (10.39)	22 - 59	NA	NA	NA
Amsterdam_Visser_sample_2	41	34.66 (8.84)	22 - 53	NA	NA	NA
Amsterdam_Visser_sample_3	12	32.67 (5.82)	23 - 44	NA	NA	NA
Amsterdam_Visser_sample_4	10	35.3 (5.38)	29 - 46	NA	NA	NA
Amsterdam_Visser_sample_5	13	37.46 (9.47)	26 - 60	NA	NA	NA
Amsterdam_Visser_sample_6	14	35.29 (9.71)	21 - 58	NA	NA	NA
Amsterdam_Visser_sample_7	16	33.5 (6.04)	25 - 46	NA	NA	NA
Amsterdam_Visser_sample_8	9	36.44 (8.14)	27 - 52	NA	NA	NA
Amsterdam_Visser_sample_9	38	35.03 (8.63)	20 - 52	NA	NA	NA
Austin_Cisler	NA	NA	NA	61	22.57 (12.51)	0 - 55
Barcelona_Cardoner*	71	25.49 (13.49)	1 - 53	71	14 (11.87)	0 - 46
Barcelona_Soriano_sample_2*	147	20.47 (10.73)	1 - 52	NA	NA	NA
Bielefeld_Lonsdorf_sample_1	116	34.86 (7.36)	24 - 55	NA	NA	NA
Bielefeld_Lonsdorf_sample_2	80	35.37 (10)	20 - 59	NA	NA	NA
Bielefeld_Lonsdorf_sample_3	28	35.93 (6.96)	24 - 52	NA	NA	NA
Bochum_Elsenbruch	29	33.03 (6.51)	21 - 44	NA	NA	NA
Bochum_Merz_sample_5	31	33.32 (6.82)	20 - 52	NA	NA	NA
Bochum_Merz_sample_6	60	36.2 (6.88)	23 - 52	NA	NA	NA
Duke_LaBar_sample_1	38	32.39 (7.86)	21 - 53	NA	NA	NA
Duke_LaBar_sample_2	37	33.28 (6.55)	20 - 48	NA	NA	NA
Manitoba_Greening_sample_1	13	38.92 (9.3)	29 - 59	NA	NA	NA
Manitoba_Greening_sample_2	31	35.27 (10.45)	21 - 57	NA	NA	NA
Melbourne_Harrison	112	38.97 (13.05)	21 - 73	NA	NA	NA
Munster_Moeck_sample_1	42	34.19 (7.3)	22 - 50	42	3.62 (4.36)	0 - 16
Reading_Reekum_sample_1	21	41.62 (8.66)	27 - 59	NA	NA	NA
Reading_Reekum_sample_2	50	42.92 (9.82)	26 - 75	NA	NA	NA
Royal_Tuominen_sample_1	28	35.57 (13.83)	20 - 67	28	5.68 (7.98)	0 - 27
Royal_Tuominen_sample_2	71	34.97 (10.33)	20 - 68	71	5.15 (6.48)	0 - 23
USP_Diniz	NA	NA	NA	25	20.4 (11.47)	0 - 44

	Texas_Dunsmoor	NA	NA	NA	45	15.68 (10.89)	0 - 41
	Ulm_Abler	50	33.38 (6.13)	23 - 52	NA	NA	NA
	Uppshala_Ahs	278	36.27 (11.44)	20 - 67	NA	NA	NA
	Vanderbilt_Kaczkurkin	82	43.38 (12.14)	21 - 70	82	12.38 (8.62)	0 - 31
	TOTAL	1586	34.45 (11.56)	1 - 75	425	12.41 (11.48)	0 - 55
298 299 300	 BDI: Beck Depression II Inventory-Trait version. (scores range from 0 to 	nventory *These : 60)	r; NA: Not ava samples usec	ailable: S the Spa	STAI-T: Stanish vers	ate Trait Anxi sion of the ST	iety AI-T
301							
302	2						
303	3						
304 305	4 5						
306	6						
307	7						
308	3						
309)						
310)						
311							
312	2						
313	3						
314	ŀ						
315	5						
316	6						
317	7						
318	3						
319)						
320)						
321							
322	2						
323	3						
324	ł						

Supplementary Table S2. Patient's medications.

Sample	Medicated (n)	SSRI or SNRI (n)	BZD (n)	Other* (n)
Austin_Cisler	36	2	0	34
Barcelona_Cardoner	1	0	1	0
Barcelona_Soriano_sample_1	16	10	0	6
Munich_Koch	12	7	0	5
Vanderbilt_Kaczkurkin	1	1	0	0
TOTAL	66	20	1	45

329 Reuptake Inhibitors; BZD: Benzodiazepines. *Includes other medications or

330 combinations of medications.

³²⁸ SSRI: Selective Serotonin Reuptake Inhibitors; SNRI: Selective Noradrenaline

		N excluded	N excluded	N included	
Sample	N collected	after	after manual		
		HALFpipe QC	QC	in analysis	
Amsterdam_Visser_sample_1	19	0	1	18	
Amsterdam_Visser_sample_2	41	0	0	41	
Amsterdam_Visser_sample_3	12	0	0	12	
Amsterdam_Visser_sample_4	11	1	0	10	
Amsterdam_Visser_sample_5	13	0	0	13	
Amsterdam_Visser_sample_6	14	0	0	14	
Amsterdam_Visser_sample_7	16	0	0	16	
Amsterdam_Visser_sample_8	10	1	0	9	
Amsterdam_Visser_sample_9	38	0	0	38	
Austin_Cisler	88	27	0	61	
Barcelona_Cardoner	90	16	3	71	
Barcelona_Soriano_sample_1	37	2	0	35	
Barcelona_Soriano_sample_2	191	44	0	147	
Bielefeld_Lonsdorf_sample_1	120	4	0	116	
Bielefeld_Lonsdorf_sample_2	83	1	2	80	
Bielefeld_Lonsdorf_sample_3	32	4	0	28	
Bochum_Elsenbruch	30	1	0	29	
Bochum_Merz_sample_1	60	1	0	59	
Bochum_Merz_sample_2	60	1	0	59	
Bochum_Merz_sample_3	48	1	0	47	
Bochum_Merz_sample_4	33	4	0	29	
Bochum_Merz_sample_5	32	1	0	31	
Bochum_Merz_sample_6	64	4	0	60	
Columbia_Neria	114	15	4	95	
Duke_LaBar_sample_1	40	2	0	38	
Duke_LaBar_sample_2	40	3	0	37	
Florida_Keil	15	0	1	14	
Harvard_McLaughlin	95	6	0	89	
Manitoba_Greening_sample_1	13	0	0	13	
Manitoba_Greening_sample_2	31	0	0	31	
Melbourne_Harrison	154	40	2	112	
Munich_Koch	52	4	3	45	
Munster_Moeck_sample_1	44	2	0	42	
Munster_Moeck_sample_2	31	2	0	29	
Reading_Reekum_sample_1	22	1	0	21	
Reading_Reekum_sample_2	52	2	0	50	
Royal_Tuominen_sample_1	17	0	3	14	
Royal_Tuominen_sample_2	37	0	0	37	
Texas_Dunsmoor	48	3	0	45	

343 Supplementary Table S3. Participants excluded after quality control (QC)

Ulm_Abler	51	1	0	50
Uppsala_Ahs	306	28	0	278
USP_Diniz	56	1	0	55
Vanderbilt_Kaczkurkin	88	6	1	81
TOTAL	2448	229	20	2199

- Supplementary Figures

- deactivation (cool colours) to the CS+ versus CS- across axial (\mathbf{a} ; Z = -68 to 106),
- sagittal (**b**; X = -86 to 88) and coronal (**c**; Y = -120 to 86) slices (n=1888 controls).

Supplementary Figure S2. Evaluation metrics of normative models. Explained
variance (a), skew (b), kurtosis (c), and Standardized Mean Squared Error (SMSE)
(d) for control test (n = 646 controls - left, pink) and clinical test (n = 260 controls +
222 individuals with anxiety-related or depressive disorders).

Frequency of large negative deviations Frequency of large positive deviations Image: Device deviation of the second device de

Supplementary Figure S3. Normative probability maps illustrate the number of participants in the sample (test controls - top; individuals with anxiety-related or depressive disorders (AMD) - bottom) who had positive (hot colours - right) or negative deviations (cool colours - left) > \pm 2.6 within each voxel.

- ...

Supplementary Figure S4. Association of age and sex with brain (de)activation during fear conditioning. Results from linear mixed-effect models and normative modeling. For normative modeling, maps show the regression coefficient or structure coefficients (rho) from normative models for each task variable, thresholded by their respective coefficients of determination ($rho^2 > 0.3$). Positive correlations (warm colours) indicate greater activation for higher values of the input variable and negative correlations (cool colours) greater activation for lower values of the input variable.

- 430 Supplementary Figure S5: Differences in brain activation between different
- 431 reinforcement rates (including participants with potential US confounding
- 432 effect). RR30 (n=268); RR50 (n=501); RR62 (n=333); RR100 (n=371).
- 433 RR=reinforcement rate. Results of pairwise comparisons after significant ANOVAs.
- 434 Asterisks indicate significant differences between groups with Bonferroni correction
- 435 (*p<.05, **p<.01; ***p<.001). Dashed blue lines indicate mean brain activation for
- 436 healthy controls. Error bars represent standard errors
- 437
- 438
- 439

Supplementary Figure S7. Influence of task variables on brain activation during
fear conditioning. Results from linear mixed-effect models for task variables not
presented in the main text. CS+=Conditioned Stimulus followed by the
Unconditioned Stimulus. ITI= Intertrial Interval. Number of CS+ in fMRI=Number of
CS+ included in fMRI contrast. For type of CS, the figure shows significant results in
the ANOVA comparing three categories (humanoid, affective pictures, and neutral
faces).

468

469 Supplementary Figure S8. Influence of task variables on brain activation during 470 fear conditioning. Results from normative models. Maps show the regression 471 coefficient or structure coefficients (rho) from normative models for each task 472 variable, thresholded by their respective coefficients of determination ($rho^2 > 0.3$). 473 Positive correlations (warm colours) indicate greater activation for higher values of 474 the input variable and negative correlations (cool colours) greater activation for lower 475 values of the input variable (note that some variables are dummy coded, e.g., 476 instructions, type of US stimuli). CS=Conditioned Stimulus; US=Unconditioned 477 Stimulus. Any task-related variable maps not shown in the main text or in this table 478 did not contain any voxels exceeding the threshold (i.e., they were empty maps).

Supplementary Figure S9: Differences in brain activation between individuals with

483 anxiety-related disorders (n=297) and healthy controls (n=1888).

- **Supplementary Figure S10:** Differences in brain activation between unmedicated
- 499 individuals with anxiety or mood-related disorders (n=207) and healthy controls
- 500 (n=1859).

- 512 Supplementary Figure S11: Differences in brain activation between patient
- 513 groups. PTSD=post-traumatic stress disorder; OCD=obsessive-compulsive
- 514 disorder; GAD=generalized anxiety disorder; SAD=social anxiety disorder. Results of
- 515 pairwise comparisons after significant ANOVAs. Asterisks indicate significant
- 516 differences between groups with Bonferroni correction (*p<.05, **p<.01; ***p<.001).
- 517 Dashed blue lines indicate mean brain activation for healthy controls. Dashed blue
- 518 lines indicate mean brain activation for healthy controls. Error bars represent
- 519 standard errors.

531 **References**

- Crawford, J., Cayley, C., Lovibond, P. F., Wilson, P. H. & Hartley, C. Percentile Norms and Accompanying Interval Estimates from an Australian General Adult Population Sample for Self-Report Mood Scales (BAI, BDI, CRSD, CES-D, DASS, DASS-21, STAI-X, STAI-Y, SRDS, and SRAS). *Aust. Psychol.* 46, 3– 14 (2011).
- Guillén-Riquelme, A. & Buela-Casal, G. [Psychometric revision and differential item functioning in the State Trait Anxiety Inventory (STAI)]. *Psicothema* 23, 510–5 (2011).
- Sandin, B., Chorot, P. & McNally, R. J. Anxiety sensitivity index: normative data and its differentiation from trait anxiety. *Behav. Res. Ther.* **39**, 213–9 (2001).
- 544 4. Spielberger, C. D. Manual for the State-Trait Anxiety Inventory (self-evaluation 545 questionnaire). *(No Title)* (1970).
- 546 5. Caci, H., Baylé, F. J., Dossios, C., Robert, P. & Boyer, P. The Spielberger trait 547 anxiety inventory measures more than anxiety. *Eur. Psychiatry* **18**, 394–400 548 (2003).
- Kennedy, B. L., Schwab, J. J., Morris, R. L. & Beldia, G. Assessment of state
 and trait anxiety in subjects with anxiety and depressive disorders. *Psychiatr. Q.* 72, 263–76 (2001).
- 552 7. Marteau, T. M. & Bekker, H. The development of a six-item short-form of the
 553 state scale of the Spielberger State-Trait Anxiety Inventory (STAI). *Br. J. Clin.*554 *Psychol.* **31**, 301–6 (1992).
- 8. Iwata, N. & Higuchi, H. R. Responses of Japanese and American university
 students to the STAI items that assess the presence or absence of anxiety. *J. Pers. Assess.* 74, 48–62 (2000).
- Bieling, P. J., Antony, M. M. & Świnson, R. P. The State-Trait Anxiety
 Inventory, Trait version: structure and content re-examined. *Behav. Res. Ther.* **36**, 777–88 (1998).
- 561 10. Brand, S. *et al.* A multi-site German validation of the Interoceptive Accuracy
 562 Scale and its relation to psychopathological symptom burden. *Commun.*563 *Psychol.* 1, 14 (2023).
- 11. Ryckewaert, R. Aandachtsbias voor doodsgerelateerde informatie bij ouderen versus jongeren . (UNIVERSITEIT GENT, 2008).
- Radua, J. *et al.* Increased power by harmonizing structural MRI site
 differences with the ComBat batch adjustment method in ENIGMA. *Neuroimage* 218, 116956 (2020).
- 569 13. Pinheiro, J., Bates, D. & R Core Team. nlme: Linear and Nonlinear Mixed
 570 Effects Models. (2024).
- 571