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Anxiety disorders are a leading source of human misery, 
morbidity, and premature mortality. Existing treatments are 
far from curative for many, underscoring the need to clarify 
the underlying neural mechanisms. Although many brain 
regions contribute, the amygdala has received the most 
intense scientific attention. Over the past several decades, 
this scrutiny has yielded a detailed understanding of 
amygdala function, but it has failed to produce new clinical 
assays, biomarkers, or cures. Rising to this urgent public 
health challenge demands an honest reckoning with the 
functional-neuroanatomical complexity of the amygdala 
and a shift from theories anchored on “the amygdala” to 
models centered on specific amygdala nuclei and cell 
types. This review begins by examining evidence from 
studies of rodents, monkeys, and humans for the “canonical 

model,” the idea that the amygdala plays a central role in fear- 
and anxiety-related states, traits, and disorders. Next, the 
authors selectively highlight work indicating that the ca-
nonical model, while true, is overly simplistic and fails to 
adequately capture the actual state of the evidentiary 
record, the breadth of amygdala-associated functions and 
illnesses, or the complexity of the amygdala’s functional 
architecture. The authors describe the implications of these 
facts for basic and clinical neuroimaging research. The re-
view concludes with some general recommendations for 
grappling with the complexity of the amygdala and accel-
erating efforts to understand and more effectively treat 
amygdala-related psychopathology.
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Fear and anxiety are evolutionarily conserved features of 
mammalian life that help protect us from harm (1, 2). But 
when expressed too strongly or pervasively, they can be 
crippling, even fatal (3–5). Anxiety disorders impose a 
staggering burden on global health, afflicting ;360 million 
individuals annually (6). In the United States alone, roughly 
one in three individuals will experience a lifetime disorder, 
service utilization is surging, and direct health care costs 
exceed $40 billion annually, drawing the attention of cli-
nicians, scientists, the media, and policy makers (7–13). 
Existing treatments were developed decades ago and have 
limited effectiveness, durability, and tolerability, under-
scoring the need to clarify the neural systems governing the 
expression of fear and anxiety (14–17). Although many re-
gions contribute, the amygdala—an almond-shaped collec-
tion of nuclei buried beneath the temporal lobe—has 
received the lion’s share of scientific attention (Figure 1). 
Over the past two decades, this intense scrutiny has yielded a 
much more detailed understanding of amygdala function, 
but it has failed to produce new clinical assays, biomarkers, 
or cures. Rising to this urgent challenge demands an honest 
reckoning with the functional-neuroanatomical complexity 
of the amygdala and a shift from conceptual models centered 
on “the amygdala” to models centered on specific nuclei and 

cell types. We begin by examining evidence for the “ca-
nonical model,” the idea that the amygdala plays a crucial 
role in all manner of fear- and anxiety-related states, traits, 
and disorders. Next, we highlight work indicating that the 
canonical model, while true, is overly simplistic and fails to 
adequately capture the nuance of a burgeoning empirical 
literature, the breadth of amygdala-associated functions 
and disorders, or the complexity of amygdala architecture 
revealed by animal models (for detailed reviews, see refer-
ences 18–21). We then describe the implications of this 
complexity for the design and interpretation of basic and 
clinical neuroimaging research and for understanding and 
developing better treatments for psychiatric illness. We have 
come to believe that shifts are required in how neuroimagers 
approach the study of fear and anxiety. Nevertheless, we 
emphasize here and reiterate later that we are not fun-
damentally pessimistic about the human neuroimaging 
enterprise—such work is a necessary complement to animal 
models, and there are valuable clues to be gleaned from the 
close study of the human brain in sickness and in health (1, 22, 
23). We conclude by outlining some general recommenda-
tions for grappling with the complexity of the amygdala and 
accelerating efforts to understand and more effectively treat 
amygdala-related psychopathology.
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THE CANONICAL MODEL OF “THE AMYGDALA”

In the minds of many scientists and even the public, the 
amygdala is synonymous with fear and anxiety (24–27). And 
in fact, converging lines of evidence indicate that the 
amygdala 1) is anatomically poised to trigger signs of fear and 
anxiety; 2) is sensitive to a wide variety of noxious and 
potentially threat-relevant stimuli, and variation in amyg-
dala function is associated with dispositional risk for anxiety 
disorders, depression, and related internalizing illnesses 
(28); 3) exerts bidirectional control over signs and symptoms 
of fear and anxiety; and 4) contributes to the development, 
maintenance, and treatment of internalizing illness.

The Amygdala Is Anatomically Poised to Orchestrate 
States of Fear and Anxiety
The amygdala lies at the center of a web of brain regions, and 
it is uniquely well-positioned to use information from sen-
sory, contextual, and regulatory regions to guide the as-
sembly of emotional responses via dense projections to the 
downstream regions that directly mediate the behavioral 
(e.g., passive and active avoidance), physiological (e.g., car-
diovascular and neuroendocrine activity, startle), and cognitive 

(e.g., vigilance, associative learning, long-term memory) fea-
tures of fear and anxiety (29–31).

Amygdala Function Is Sensitive to Threat and Covaries 
With Dispositional Risk for Internalizing Illness
Studies of rhesus monkeys (Macaca mulatta) afford an op-
portunity to obtain concurrent measures of naturalistic 
defensive behaviors, neuroendocrine activity, and brain 
metabolism in response to ethologically relevant threats, 
including explicit cues of potential danger (e.g., an unfa-
miliar human intruder’s profile) and more diffuse contexts 
(e.g., a novel testing cage)—something that would be chal-
lenging to accomplish in humans. Using [18F]fluorodeox-
yglucose positron emission tomography (FDG-PET) in 
samples encompassing as many as 592 individuals, Kalin, 
Fox, and colleagues have demonstrated that amygdala ac-
tivity (glucose metabolism) covaries with heightened be-
havioral inhibition (e.g., freezing) and cortisol responses to 
such threats (32–37). Amygdala metabolism is moderately 
stable over time and context and, as such, represents a trait- 
like feature of brain function (36). Fox and colleagues 
showed that amygdala metabolism during exposure to an 
unfamiliar human intruder’s profile showed an intraclass 
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a The amygdala is an almond-shaped collection of more than dozen nuclei buried beneath the medial temporal lobe. Panel A shows the location of the 
amygdala within the human brain. The vertical red line indicates the location of the coronal schematic shown in panel B, which illustrates the location of 
the amygdala relative to other subcortical regions. Panel C shows the amygdala nuclei; note that some nuclei are not visible at this location. 
ACTA=amygdalocortical transition area; AHA=amygdalohippocampal area; BL=basolateral nucleus; BM=basomedial nucleus (accessory basal); 
Ce=central nucleus; Co=cortical nucleus; ITC=intercalated cells; La=lateral nucleus; Me=medial nucleus; PL=paralaminar nucleus. Portions of the 
figure were adapted with permission from the Allen Institute for Brain Science human reference atlas (262).
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correlation (ICC) of 0.64 over 1.1 years, similar to the con-
current stability of defensive responses to threat in young 
monkeys (ICC=0.72) (34, 38, 39) and the 5-year stability of 
neuroticism/negative emotionality, a prominent disposi-
tional risk factor for internalizing illnesses, in humans 
(partial R=0.60; N=56,735) (31, 40).

Like the anxiety disorders, anxious temperament or “trait 
anxiety” reflects a mixture of nature and nurture in humans and 
nonhuman primates (33, 41, 42). Work in monkeys demon-
strates that the neural circuitry underlying trait-like variation in 
anxiety can be similarly fractionated. Although heritable, 
amygdala metabolism appears to be more closely related to the 
variation in anxious temperament that is explained by differ-
ences in early-life experience (h2=0.29, rg=n.s., N=592) (33). 
In contrast, functional connectivity between the amygdala and 
the neighboring bed nucleus of the stria terminalis (BST) ap-
pears to be more closely associated with the heritable variation 
in anxious temperament and, hence, to the intergenerational 
transmission of internalizing risk from parents to their off-
spring (h2=0.45, rg=0.87, N=378) (43).

Among humans, the amygdala is recruited by a broad 
spectrum of noxious and potentially threat-relevant stimuli, 
both learned and unlearned, including aversive scenes and 
odors, Pavlovian threat cues (CS+), uncertain- and certain- 
threat anticipation, horror movies, an approaching tarantula, 
pain, and photographs of angry, fearful, and untrustworthy 
faces (22, 44–58). Increased amygdala activation is, in turn, 
associated with elevated levels of threat-elicited distress and 
psychophysiological arousal (22). More recent work has 
leveraged machine learning approaches to show that the 
amygdala is also a key element in whole-brain multivoxel 
patterns or “signatures” that predict the intensity of negative 
affect triggered by noxious stimuli (i.e., in individuals not 
used for signature training [59]) and that distinguish Pav-
lovian threat (CS+) from safety (CS−) (52, 60, 61).

Like monkeys, human adults and youths with a more 
anxious, neurotic, or shy disposition are prone to more in-
tense or persistent activation in the amygdala. This has been 
observed both at “rest,” in the absence of an explicit task, and 
in response to novelty, task-irrelevant negative emotional 
faces, aversive images, and Pavlovian threats (41, 53, 62–65). 
For example, Kaczkurkin et al. (66) used a large peri- 
adolescent youth data set (N=875) to show that, on aver-
age, adolescent females are marked by a more anxious 
temperament than adolescent males and that this differ-
ence statistically reflects elevated resting perfusion in the 
amygdala (sex → resting amygdala activity → disposition). 
Amygdala–temperament associations appear to be more 
pronounced following acute stress inductions (67) and are 
amplified among individuals with lower social support (68), 
another risk factor for internalizing illness (31).

The Amygdala Exerts Bidirectional Control Over 
Fear- and Anxiety-Related States and Traits
Lesion and other loss-of-function experiments (e.g., opto-
genetic inhibition) in rodents demonstrate that the amygdala 

is mechanistically critical for orchestrating defensive re-
sponses to a variety of threats, learned and unlearned, certain 
and uncertain (19, 22, 69–74). The amygdala is also critical 
for mounting species-typical avoidance and escape re-
sponses to naturalistic threats, such as a robotic virtual 
predator (75).

Other work in mice suggests a role for the amygdala in 
anxious temperament and related emotional traits. For ex-
ample, Ahrens et al. (76) showed that anxious, behaviorally 
inhibited mice are characterized by tonically elevated 
amygdala activity, consistent with FDG-PET and perfusion 
fMRI studies in humans and monkeys (36, 66, 77, 78). In an 
elegant series of experiments, Ahrens et al. demonstrated 
that amygdala activity is sensitive to uncertain danger 
(unpredictable shock) and is both necessary and sufficient 
for heightened defensive responses to novelty and diffuse 
threat (open field).

While our understanding of the primate amygdala lags 
behind that of rodents, work in monkeys and humans sug-
gests that it is mechanistically crucial for mounting defensive 
responses to threat. In monkeys, fiber-sparing (excitotoxic) 
lesions of the amygdala attenuate defensive behaviors and 
endocrine responses to both conditioned and innate threats, 
including unfamiliar conspecifics (79–82).

These observations dovetail with work in humans. 
Patient SM, for example (83), is marked by near-complete 
bilateral destruction of the amygdala and shows a pro-
found lack of fear and anxiety—whether measured ob-
jectively or subjectively—to both diffusely threatening 
contexts (e.g., traversing a haunted house, where the timing 
and nature of threat encounters is uncertain) and acute 
threats, including spiders, snakes, horror films, Pavlovian 
threat cues, “jump scares” in the haunted house, and even 
real-world assault. Notably, SM also shows profoundly low 
levels of dispositional fear and anxiety—whether indexed by 
self-report, family report, clinician report, or daily diary 
(83–85).

Other work has examined the consequences of amplifying 
amygdala activity. Work in monkeys shows that manipula-
tions that increase amygdala metabolism can potentiate 
freezing and other signs of threat-evoked anxiety (80), 
consistent with rodent studies (76). Likewise, electrical 
stimulation of the human amygdala has been shown to elicit 
conscious feelings of fear and anxiety, accompanied by 
tachycardia and surges in electrodermal activity (86). Inman 
et al. (86) describe an individual (“subject 8”) who experi-
enced intense fear and anxiety in response to 6-volt stim-
ulation in the right amygdala: “It was, um, it was terrifying, it 
was just . . . it was like I was about to get attacked by a dog . . .

like someone unleashes a dog on you, and it’s just like it’s so 
close, and you feel like you’re going to s— your pants. It’s 
terrifying.” At 8 volts, he asked to terminate the stimulation, 
saying, “That was so scary it was nauseating. It’s like, um, I 
went zip-lining a few weeks ago . . . and this was worse.” Such 
feelings were dose-dependent, absent during intermixed 
sham trials, reproducible across sessions, and broadly 
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consistent with earlier microstimulation observations 
(87–89). Taken with the loss-of-function data, this suggests 
that circuits centered on the amygdala exert bidirectional 
control over many of the core signs and symptoms of fear- 
and anxiety-related states and traits.

Amygdala Hyperreactivity Is Associated With 
Internalizing Illness and Normalized by Treatment
Several lines of evidence indicate that the amygdala plays a 
prominent role in the pathophysiology of anxiety disorders 
and depression.

Amygdala activation:

1. Is elevated in children, adolescents, and adults with in-
ternalizing disorders and in individuals with a positive 
family history (90, 91). Parallel effects have been reported 
for “resting” amygdala perfusion (66). Three recent 
coordinate-based meta-analyses (CBMAs), collectively 
encompassing thousands of participants, provide consis-
tent evidence of amygdala hyperreactivity in individuals 
with major depressive disorder and/or anxiety disorders 
(92–94). In the most nuanced CBMA, McTeague et al. (93) 
observed significant amygdala hyperreactivity to “emo-
tional” tasks among individuals with interview-verified 
anxiety or depression diagnoses. Ancillary analyses sug-
gested that these effects were largely driven by studies of 
negative faces and scenes. Amygdala hyperreactivity was 
also evident in a comprehensive recent CBMA focused on 
anxiety disorders and emotional tasks (95).

2. Is amplified by exposure to the same kinds of stressors 
and psychological pathogens (e.g., combat, childhood 
maltreatment) that can precipitate acute illness in at-risk 
individuals (90, 96–98). For example, a recent CBMA 
encompassing more than 3,000 participants indicated 
that adversity exposure is associated with exaggerated 
reactivity of the amygdala to emotional tasks (99).

3. Prospectively predicts heightened internalizing symp-
toms among adolescents and emerging adults exposed to 
stress, trauma, or negative life events (100–102). For 
example, McLaughlin et al. (103) showed that adolescents 
marked by a more reactive amygdala at baseline experi-
enced heightened posttraumatic symptoms 9 months 
after exposure to the terrorist attack at the 2013 Boston 
Marathon. Among young children, amygdala activation 
has been shown to prospectively predict the worsening of 
internalizing symptoms (62).

4. Is attenuated by clinically effective pharmacological (e.g., 
benzodiazepine, SSRI) treatments for anxiety and de-
pression (90, 104–107), consistent with work in rodents 
(108, 109). Amygdala reactivity is dampened by moderate 
doses of ethanol (110), a well-established anxiolytic that, 
like the benzodiazepines, enhances inhibitory neuro-
transmission in the amygdala (111–113). The discontinu-
ation of antidepressant treatment often triggers relapse, 
and new work suggests that individuals who exhibit a 

“rebound” in amygdala reactivity at the time of discon-
tinuation are more likely to relapse (114).

5. Is attenuated by cognitive-behavioral therapy (CBT) in 
anxiety patients (107, 115, 116) and by cognitive reap-
praisal (a core element of CBT) in psychiatrically healthy 
individuals (117).

Collectively, these observations suggest that heightened 
amygdala function contributes to the development and 
maintenance of pathological fear, anxiety, and depression. 
Despite this progress, it has become increasingly clear that 
things are not so simple. To develop a more complete and 
useful understanding of amygdala function, we first need to 
reckon with its anatomical complexity.

A NEUROANATOMICAL PERSPECTIVE ON 
“THE AMYGDALA”

The amygdala was discovered and named by Burdach in the 
early 19th century, decades before Nissl, Golgi, and Cajal 
developed the stains needed to resolve cellular details and 
150 years before the advent of the chemical tracers needed to 
study long-range connectivity (118). As these tools became 
available, neuroanatomists recognized that “the amygdala” is 
an anatomical concept that lumps together at least 12 dif-
ferent nuclei, each containing millions of functionally and 
structurally distinct cells (20, 118, 119). Differences in the 
contribution of these nuclei to fear, anxiety, and other be-
haviors reflect differences in cellular composition and 
connectivity (118). The overall composition of amygdala 
nuclei ranges from “striatal-like,” in the case of the central 
(Ce) and medial (Me) nuclei, to “cortical-like,” in the case of 
the basal (Ba) and lateral (La) nuclei (often grouped together 
as “BLA”). Although both regions contain mixtures of in-
hibitory (GABAergic) and excitatory (glutamatergic) neu-
rons, the Ce and Me primarily contain inhibitory neurons 
that project to subcortical and brainstem nuclei, whereas the 
La and Ba primarily contain excitatory neurons with robust 
bidirectional connections to the cortex. Recent work in 
humans and monkeys indicates that Ce neurons, whether 
inhibitory or excitatory, show different profiles of gene ex-
pression when compared to their La counterparts, as 
indexed by single-nucleus RNA sequencing (120). In fact, the 
Ce is more similar to the extra-amygdalar BST—in terms of 
gene expression, cytoarchitecture, neurochemistry, con-
nectivity, embryonic development, and many aspects of 
function—than it is to the La (21, 22, 48, 121, 122). Based on 
these kinds of neuroanatomical similarities, Alheid and 
Heimer (121) proposed an alternative anatomical concept— 
the “extended amygdala”—that encompasses a mixture of 
amygdalar and extra-amygdalar regions, including the Ce, 
Me, BST, portions of the sublenticular extended amygdala 
(an archipelago of cell islands lying between the substantia 
innominata and lenticular nucleus), and parts of the nucleus 
accumbens shell that neighbor the BST (20, 121). In short, 
even a cursory inspection of these kinds of anatomical data 
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makes it clear that “the amygdala” is neither a natural kind 
nor a singular unit—that it combines disparate regions (Ce/ 
Me vs. BLA) and omits similar ones (e.g., BST)—suggesting 
that the canonical model is too simplistic.

NEW HUMAN DATA AND SHORTCOMINGS OF THE 
CANONICAL MODEL

From a human neuroimaging perspective, the canonical 
model—which implies that the amygdala is the neural center 
for fear and anxiety—suffers from two notable shortcomings. 
First, associations with fear- and anxiety-related constructs, 
while statistically significant, are often weaker and less 
generalizable than often assumed. Second, the canonical 
model fails to adequately capture the breadth of functions 
and disorders supported by the amygdala, suggesting that the 
amygdala’s contribution to fear and anxiety may be more 
nuanced and complex than the model suggests. To be clear, 
these limitations do not fundamentally undermine the ca-
nonical model, but they do raise conceptual and practical 
concerns, and they underscore the need to adopt approaches 
that more fully embrace the functional and anatomical 
complexity of the amygdala.

Associations With Fear and Anxiety Are Often Modest 
and Inconsistent
Basic neuroscience research. Much of the groundbreaking 
work to understand the function of the rodent amygdala 
focused on its role in Pavlovian conditioning (123). Guided by 
this work, the first wave of human fMRI studies reported 
heightened amygdala activation to Pavlovian threat cues 
(CS+ > CS−), suggesting an evolutionarily conserved 
functional-neuroanatomical system (124, 125). But repli-
cating these observations—which were based on a grand 
total of 19 participants—has proved challenging, with many 
groups reporting null effects (54, 126, 127) or even amygdala 
deactivation (CS+ < CS−) (127, 128). Similar inconsis-
tencies are evident in the instructed threat-of-shock liter-
ature (44, 95, 129, 130). While the mechanistic status of the 
human amygdala in Pavlovian threat conditioning was never 
in any real doubt (131), for much of the past decade, it was 
unclear whether this association could be reliably detected 
in human fMRI studies. While differences in methodology 
and sample composition certainly contribute (132, 133), a 
more substantive answer to this question only recently 
emerged. Leveraging a well-powered sample (N=601) and a 
region-of-interest approach, Wen et al. (51) showed that 
many of these inconsistencies reflect a mixture of weak 
statistical effects, rapid habituation, and the field’s tendency 
to aggregate heterogeneous amygdala nuclei. They showed 
that statistically significant but numerically negligible 
amygdala activation is evident using a conventional analytic 
approach, which entails aggregating across all acquisition 
trials and nuclei (Cohen’s d=0.12). Effects were stronger in 
the first four trials of the acquisition phase (Cohen’s d=0.51), 
particularly the first trial (before the association is learned), 

but even here the authors’ power analyses indicated that 
;80 participants are required to consistently detect dif-
ferential amygdala reactivity at a liberal threshold (CS+ >

CS−; 75% power; alpha=0.01, uncorrected). Trial-by-trial 
analyses revealed significant deactivation within ;10 trials, 
and this effect was especially pronounced in the BLA. During 
the extinction phase, heightened amygdala activation was 
evident only for the first 1–2 trials. These findings, which 
dovetail with rodent electrophysiological work, strengthen 
claims of conserved amygdala function and reinforce the 
importance of going beyond “the amygdala” to examine 
individual nuclei or circumscribed sets of nuclei (e.g., BLA). 
They also highlight the value of examining more fine-grained 
temporal dynamics. Yet, the need to focus on such a limited 
number of trials raises serious concerns about psychometric 
reliability and casts doubt on the utility of this approach for 
psychiatric neuroimaging association studies (134–136).

Individuals with an anxious, shy, or neurotic disposition 
are more likely to develop internalizing disorders, and if they 
do, they may experience a more severe and treatment- 
resistant course (31). Although early human fMRI studies 
indicated that these risk-conferring dispositional pheno-
types are associated with exaggerated amygdala reactivity to 
emotional faces (137–139), four recent large-sample studies 
(Ns, 213–1,256) failed to replicate these associations (44, 
140–142). This suggests that relations between dispositional 
risk and amygdala reactivity to emotional faces are either 
negligible or, as with the Pavlovian literature, require spe-
cialized approaches to detect (143, 144). There are hints that 
amygdala–disposition associations are stronger for faces that 
are task-irrelevant, unattended, or presented outside of 
conscious awareness (64, 137, 145). Whether this is generally 
true and whether these associations are sufficiently con-
sistent and strong to warrant further investment is unclear. 
Weak and inconsistent associations are not limited to 
emotional face paradigms. Early work suggested that in-
dividuals with an anxious or neurotic disposition show 
heightened amygdala reactivity during periods of threat 
anticipation, as with Pavlovian threat conditioning and 
instructed threat-of-shock paradigms (146). With one 
exception (53), subsequent studies—many featuring rel-
atively large samples (Ns, 50–220)—have reported null 
effects (reviewed in reference 44).

Mechanistic work has also revealed effects that are in-
consistent with a simplistic version of the canonical model. 
Amygdala lesions do not completely abolish threat-elicited 
freezing, and not all manipulations that increase amygdala 
activity increase anxious or fearful behaviors (81). For ex-
ample, in monkeys, overexpression of neurotrophin-3 in the 
dorsal amygdala increases Ce metabolism, but decreases 
anxious temperament (147). Although microstimulation of 
the human amygdala can produce signs and symptoms of fear 
and anxiety, and these are the most commonly evoked 
emotions, conscious feelings are infrequently triggered and 
are by no means confined to fear; in fact, feelings of sadness, 
guilt, joy, and happiness have been reported (86–89). This 
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heterogeneity likely reflects, in part, variability in the in-
tensity and nuclear location of stimulation (86).

Conversely, loss-of-function research indicates that the 
human amygdala is not necessary for experiencing all forms 
of fear and anxiety. In a seminal study (148), patient SM and 
two other patients with bilateral amygdala lesions experi-
enced frank panic attacks, reported intense feelings of fear, 
anxiety, and panic, and showed elevated signs of arousal in 
response to CO2 inhalation, a well-validated interoceptive 
threat. Taken with the data reviewed above (in the section 
“The Canonical Model of ‘The Amygdala’”; e.g., 83), these 
observations suggest that although the amygdala can be 
critical for organizing fear and anxiety in response to many 
external threats (but perhaps not all; e.g., as with Pavlovian 
“overtraining”), it is not necessary for triggering emotional 
response to CO2-triggered air hunger, an endogenous threat.

Clinical neuroimaging research. Overlapping concerns apply 
to the clinical neuroimaging literature.

1. To ensure an adequate number of studies, CBMAs of the 
clinical neuroimaging literature have been compelled to 
“lump” across diagnoses, ages, and tasks, precluding in-
ferences about diagnostic or symptom specificity (92–94). 
Among individuals with anxiety disorders, a recent 
CBMA demonstrated amygdala hyperreactivity to emo-
tion perception and generation tasks (95). While this was 
true when collapsing across diagnoses, in disaggregated 
analyses it was only evident for specific phobia and social 
anxiety disorder. Whether this reflects genuine diag-
nostic differences or an artifact of systematic differences 
in statistical power and fMRI tasks is unknown (149).

2. Early research suggested that amygdala activation is as-
sociated with the severity of internalizing symptoms (150, 
151). Yet, more recent studies with substantially better 
power (Ns, 229–28,638) indicate that amygdala reactivity 
to negative emotional faces and Pavlovian threat cues is 
unrelated to concurrent anhedonia, depression, fear, or 
general distress symptoms (128, 152), consistent with null 
effects for dimensional measure of anxious temperament 
and neuroticism/negative emotionality (44). Whether 
this reflects a genuinely null effect, an artifact of aggre-
gating amygdala nuclei, or suboptimal fMRI assays is 
unclear. In several well-powered studies (Ns, 592–875), 
significant associations with basal measures of activity in 
the dorsal amygdala have been consistently observed 
(33, 66). Although this provides an empirical rationale 
for prioritizing the Ce and neighboring nuclei for 
mechanistic follow-on studies, the magnitude of these 
associations is too modest for clinical application or 
therapeutics development.

3. In a groundbreaking study (N=340), Swartz et al. (100) 
showed that heightened amygdala reactivity to fearful 
and angry faces predicts the worsening of anxiety and 
anhedonia symptoms in young adults exposed to negative 

life events. While scientifically useful, here again, the 
magnitude of this prospective association (d=0.33, 
r2=0.027) is too weak to be useful for screening, di-
agnosis, or other clinical applications centered on indi-
viduals (for online visualization tools, see 153, 154). More 
generally, null effects are not uncommon in prospective 
studies. For example, Peng et al. recently reported that 
amygdala reactivity to Pavlovian threat cues is unrelated 
to the longitudinal course of internalizing symptoms 
across a 2.5-year follow-up (N=279) (155). Whether this 
reflects the use of a whole-amygdala region of interest and 
conventional analyses of the Pavlovian paradigm (see 
above) or a failure to measure and model negative life 
event exposure is unknown.

4. Early studies suggested that amygdala reactivity is 
dampened by cognitive reappraisal in healthy individuals 
and by CBT in patients with internalizing disorders 
(115–117). Yet, Bo et al. (55) recently failed to detect 
significant amygdala down-regulation in a well-powered 
reappraisal study (N=358), even when examining spe-
cific amygdala nuclei. This is consistent with null effects 
in recent CBMAs of the CBT neuroimaging literature 
(55, 156, 157).

Is the amygdala a key player in fear- and anxiety-related 
states, traits, and disorders? Undoubtedly. Is there any value 
to clinical neuroscience research? Yes, work conducted over 
the past two decades has yielded steady advances in our 
understanding of what the amygdala does and does not 
contribute to the expression and experience of fear and 
anxiety in rodents, monkeys, and humans. Nevertheless, the 
data reviewed in this section provide a sober reminder that 
most of the work remains to be done, and they raise concerns 
that neuroimagers have relied too heavily on underpowered 
samples, a limited number of suboptimal workhorse tasks 
(e.g., emotional faces), and analytic approaches that disre-
gard anatomical heterogeneity and temporal dynamics, 
weakening associations with psychiatric phenotypes (1, 91). 
The degree to which modest brain–behavior associations 
reflect cellular heterogeneity within amygdala nuclei re-
mains unclear, a point we return to later.

The Human Amygdala Is Not Specific to Fear 
and Anxiety
The amygdala’s robust contributions to fear and anxiety 
often overshadow its role in other behavioral functions and 
psychiatric illnesses. The field has long recognized that the 
amygdala contributes to a variety of non-threat functions (27, 
158–160), and human neuroimaging studies show that the 
amygdala is robustly engaged by a variety of positive stimuli, 
including erotica, food and drug cues, music, pleasant odors, 
happy faces, and humorous stimuli (56, 161–170). The amygdala 
also appears to play a key role in directing eye gaze to the 
parts of the face most diagnostic of others’ intentions and 
inner states (31, 171). Likewise, detailed studies of patient SM 
and other individuals with circumscribed damage indicate 
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that the amygdala plays a critical role in aspects of social 
perception and decision making, theory of mind, the emo-
tional modulation of declarative memory, and loss aversion 
for rewards (172, 173). Convergent evidence comes from 
work in monkeys, where fiber-sparing lesions of the amyg-
dala disrupt normative preferences for viewing conspecific 
faces (174) and lead to aberrant visual inspection of faces 
(175).

From a clinical perspective, the amygdala is now known to 
contribute to a wide variety of neuropsychiatric disorders— 
not just internalizing illnesses. Among these, temporal lobe 
epilepsy and autism spectrum disorder (ASD) are perhaps 
the most familiar (88, 176). Youths with ASD show aberrant 
trajectories of neuroanatomical maturation in the amygdala 
(177, 178) and alterations in gaze-dependent amygdala re-
activity to faces (171, 179, 180). Other work suggests a role in 
psychosis. A recent CBMA demonstrated that individuals 
with schizophrenia show exaggerated amygdala reactivity to 
emotionally neutral stimuli (181), while those with height-
ened paranoia show elevated amygdala perfusion at rest 
(182, 183). Other work suggests that the amygdala plays an 
important, though often overlooked role in substance use 
disorders and obesity (e.g., 184). For example, feelings of 
hunger have been shown to amplify amygdala reactivity to 
food cues in unselected samples, and to amplify reactivity to 
drug cues in users (185–187). Furthermore, heightened 
amygdala reactivity to drug cues is attenuated by successful 
attempts to cognitively downregulate craving intensity, 
consistent with a causal role (188). More recently, the 
amygdala has been implicated in the development of neu-
rodegenerative disorders, including Alzheimer’s and Par-
kinson’s disease (189–191). While many of these associations 
are modest in size, they underscore the amygdala’s relevance 
to a broad range of illnesses.

Taken together, these observations make it clear that the 
amygdala is not a fear and anxiety center; it is a key con-
tributor to a panoply of practically and psychiatrically im-
portant behaviors, symptoms, and illnesses. Recent work in 
rodents has provided some valuable clues about the cellular 
mechanisms that potentially underlie this diversity of 
functions and phenotypes.

NEW INSIGHTS FROM RODENT MODELS OF 
THE AMYGDALA

Seminal work in rats and rabbits by LeDoux, Kapp, Davis, and 
others (123, 158, 192) led to a detailed understanding of the 
amygdala’s role in Pavlovian threat learning and set the stage 
for the canonical model as we currently know it. Early 
theories emphasized the serial flow of information from La, 
the sensory gateway to the amygdala, to Ce, the major output 
station of the amygdala (123, 192). Pavlovian associative 
memories are formed in La, where information about a tone 
or another benign conditioned stimulus (CS+) and a shock 
unconditioned stimulus (US) converge. With sufficient 
pairings, this convergence induces synaptic strengthening in 

La, enabling the formerly neutral CS to trigger preparatory 
defensive responses via projections to Ce, which serves as a 
relay to downstream effector regions (Figure 2A). Although 
the serial model was an important milestone in the scientific 
study of the amygdala, it has become increasingly clear that 
it, too, is incomplete. Building on new data, theorists have 
summarized this updated understanding with different sorts 
of simplified schematics, each incorporating features that 
were unknown or overlooked by the serial model. First, La 
learning depends on indirect feedback from Ce, which is at 
odds with the serial-relay view (Figure 2B) (193, 194). Sec-
ond, the intercalated cells (ITCs)—small clusters of cells 
nestled along the border of Ce and Ba/La—and other 
amygdala nuclei participate in Pavlovian threat learning 
(Figure 2C) (195, 196). Direct projections from La to Ce are 
relatively modest, and much of the communication happens 
via intermediate nuclei, including the ITCs and Ba. ITCs 
relay information from La to Ce and are modulated by input 
from frontal regions during acquisition and extinction 
(prelimbic and infralimbic cortex, respectively, in rodents) 
(195). Third, other amygdala nuclei can, in coordination with 
frontal regions, influence defensive responding. For exam-
ple, the basomedial nucleus can decrease freezing elicited by 
both learned (Pavlovian threat) and unlearned (open-field) 
triggers (197). Likewise, Me can initiate freezing and other 
defensive responses to a variety of naturalistic threats (198). 
Fourth, like the overarching canonical model, the serial- 
relay model of Pavlovian threat conditioning makes no at-
tempt to incorporate the role of amygdala nuclei (including 
La, Ba, and Ce) in non-threat functions, including reward 
(199–201), social behavior (202, 203), olfaction (204), ag-
gression (205), and others (159, 206, 207).

The fact that the La, Ba, Ce, and other amygdala nuclei 
each contribute a range of functions—both threat and non- 
threat—highlights the need to grapple with the anatomical 
complexity lying within these nuclei. Within each nucleus, 
cells can be grouped into functionally distinct populations 
based on their patterns of gene expression and/or connec-
tivity. Studies in rodents have leveraged projection and cell 
type–specific opto- and chemogenetic manipulations to 
identify microcircuits that contribute to a rich variety of 
threat-related and non-threat behaviors (19, 207–211). In 
some cases, this work has revealed intermingled cellular 
populations with distinct, even opposing, influences on 
behavior (22). Here, we selectively highlight a few illus-
trative examples of these new insights. Studies of mouse BLA 
have revealed overlapping groups of Ce- and nucleus 
accumbens–projecting neurons that are required for threat 
and reward learning, respectively (199, 212, 213, 214). Other 
work demonstrates that stimulation of different groups of 
intermingled Ce neurons can trigger a variety of defensive 
and non-defensive responses, including prey pursuit and 
capture (215), eating (216, 217), taste preferences (218), and 
pain (219).

From a neuroimaging perspective, these observations 
raise questions about whether and how we can discern 
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intranuclear differences in cellular function. After all, the 
engagement of different cellular populations is not neces-
sarily associated with differences in bulk activation, as 
indexed by fMRI. In the BLA, for example, one can imagine 
that the recruitment of threat- and reward-sensitive cells 
leads to similar overall levels of activity (see the online 
supplement). Importantly, the complexities of microcircuit 
architecture can further complicate relations with bulk 
activation. In the Ce, for instance, the same threat can recruit 
distinct groups of somatostatin (SST+) and corticotropin- 
releasing hormone (CRH+) cells to trigger freezing or es-
cape, respectively (220). Critically, SST+, CRH+, and 
protein kinase Cδ (PKCδ+) cells are mutually inhibitory; 
that is, increasing the activity of one attenuates the others 
(Figure 2D) (19, 208, 210, 211). In short, different behaviors 
and tasks, each mediated by distinct Ce cellular populations, 
could result in identical changes in bulk activation.

Interim Conclusions
The amygdala encompasses more than a dozen nuclei, 
each containing intermingled populations of cell types. 
Over the past decade, work in mice has revealed that these 
cells contribute to a broad array of threat- and non-threat 
functions and behaviors. These are often mediated by 
dynamic interactions between cell types within micro-
circuits that are situated within and across amygdala 
nuclei (and other regions of the brain). With this new 
knowledge in hand, the modest and inconsistent associ-
ations between neuroimaging measures of “the amygdala” 
and psychiatrically relevant phenotypes in humans are 
hardly surprising. The canonical model of “the amygdala” 
is insufficient, and studying “the amygdala” is nearly al-
ways the wrong level of analysis. The challenge for the 
neuroimaging community is to embrace and leverage this 
functional-neuroanatomical complexity.

FIGURE 2. Amygdala microcircuitsa
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BL

Ce

A. Serial model

CeL
CeM

D. Inhibitory microcircuit within Ce

BLA

Ce

B. Ce provides feedback to La
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Behavioral and
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a Influential models developed in the late 20th and early 21st century emphasized the serial flow of information from La, the sensory gateway to the 
amygdala, to Ce, the major output station (panel A) (25). Ce triggers defensive responses via efferent projections to subcortical and brainstem effector 
regions. More recent evidence has produced a new generation of schematics. Some emphasize the flow of feedback from Ce to BLA (193, 194) (panel 
B), and some emphasize the ITCs’ role in mediating the flow of information from La to Ce (panel C) (195, 196). Still others focus on the role of inhibitory 
Ce microcircuits in selecting defensive responses to threat (panel D) (19, 208, 210, 211). BL=basolateral nucleus; BLA=lateral, basolateral, and 
basomedial nuclei; Ce=central nucleus; CeL=lateral division of Ce; CeM=medial division of Ce; ITC=intercalated cells; La=lateral nucleus.
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IMPLICATIONS OF AMYGDALA CELLULAR 
HETEROGENEITY AND OPPORTUNITIES FOR 
ACCELERATING CLINICAL RESEARCH

A central goal of psychiatry and clinical psychology is to 
prevent or cure psychiatric illness. Yet, billions of dollars of 
research have largely failed to uncover new assays, bio-
markers, or treatments. Research focused on “the amygdala” 
cannot to rise to this challenge. Based on what we now know 
about amygdala cells and microcircuits, the mapping be-
tween brain and psychiatric phenotypes likely reflects a 
mixture of “many-to-one” and “one-to-many” associations 
(221). Many-to-one refers here to perturbations of multiple 
cell types that can produce similar behavioral disturbances. 
For instance, alterations to Ce-projecting BLA neurons, 
ITCs, or SST+ Ce neurons can all influence Pavlovian threat 
conditioning. One-to-many refers to perturbations to dif-
ferent cell types within a single nucleus that can have dra-
matically different behavioral consequences (e.g., SST+ vs. 
CRH+ neurons in Ce) (220) and perturbations of the same 
cell type that could impact different outcomes, depending on 
the larger circuit in which they are embedded (e.g., CRH+

cells are involved in both escaping threat and approaching 
reward) (220, 222). To the extent that different amygdala- 
implicated disorders (see the section “New Human Data and 
Shortcomings of the Canonical Model,” above) are marked 
by different signs and symptoms, this likely reflects distinct 
cellular substrates. Conversely, to the extent that different 
patients with a particular amygdala-implicated disorder or 
different disorders share overlapping symptoms, this may 
reflect shared cellular substrates. The same implications 
apply to the development of new therapeutics.

Recent insights into the cellular complexity of the 
amygdala also have implications for the interpretation of 
gene association studies. Like other brain regions, cell typing 
in the amygdala is often based on patterns of gene ex-
pression. Gene association studies indicate that thousands 
of genetic variants contribute to amygdala-relevant disor-
ders (223–228). The impact of these genes on psychopa-
thology is proximally mediated by their influence on neural 
cells. Genes that are uniquely expressed in specific amygdala 
cell types are likely to have circumscribed phenotypic 
consequences, whereas those that are expressed across 
different types of amygdala cells are likely to have a broad 
impact, and genes that are expressed in both amygdala and 
non-amygdala cells will have the broadest and least specific 
behavioral consequences. These insights can help make 
sense of evidence that many psychiatric disorders are co- 
heritable and rely on overlapping sets of genes (229, 230). In 
short, understanding what cell types are impacted and how 
they contribute to psychopathology has the potential to 
guide the development of novel therapeutics, a point we 
develop further below.

Cells are the fundamental building blocks of the brain and 
are shaped by a combination of genetic and experiential 
processes. Cell types provide a natural biological platform for 

accelerating our understanding of neuropsychiatric illness 
and for developing more effective treatments with fewer off- 
target effects. Consider Parkinson’s disease. While it has long 
been recognized that Parkinson’s reflects the loss of dopa-
mine neurons in the substantia nigra pars compacta, it was 
unclear which cells were most vulnerable, and the under-
lying molecular processes remained enigmatic. Recent work 
identified a single class of cell types that are dispropor-
tionately affected, which in turn highlighted a set of specific 
molecular processes that appear to mediate heightened 
genetic risk (231). Other work has begun to exploit infor-
mation about cell types to create precisely targeted gene 
therapies for disorders of the retina and inner ear (232, 233). 
From a therapeutics perspective, treatments that target a cell 
type for excitation or inhibition are attractive because they 
can address multiple candidate etiologies, all of which ul-
timately act at the level of the cell. For example, disruption of 
a receptor, the regulation of its expression, or its intracellular 
signaling could all potentially result in the same functional 
outcome. Even if they do not directly address the underlying 
cause, a cell type–targeted treatment could effectively ad-
dress any or all of them by simply inhibiting the cell, either 
tonically or in an activity-dependent manner (234).

To achieve the promise of cell-type treatments for 
amygdala-related disorders, we must first develop a taxon-
omy of human cell types and understand the degree to which 
they are conserved across mammalian species. Efforts are 
ongoing and underscore the complexity of the mammalian 
brain (235–243). Even comparatively “simple” regions, such 
as primary motor cortex, contain more than 50 unique cell 
types (235). Although there is no agreed-upon compre-
hensive taxonomy for amygdala cell types, data from mul-
tiple groups suggest that this heterogeneity goes beyond 
commonly used chemoarchitectonic (e.g., GABAergic vs. 
glutamatergic), cytoarchitectonic (e.g., projection vs. me-
dium spiny), or expression-based (e.g., SST+ vs. CRH+) 
classifications (242–245). Moreover, there is no guarantee 
that the amygdala cells mediating threat-elicited freezing in 
mice (e.g., SST+) perform the same functions, or even exist, 
in humans (120). Indeed, comparative work has begun to 
reveal a mixture of conserved and, perhaps, human-unique 
cell types in the amygdala (120).

Once cell types are identified, we need to identify the 
types that are most relevant to psychiatric symptoms and 
disorders. This can be accomplished by fusing cell type 
taxonomies with data from human genome-wide association 
studies. For example, Kamboj et al. (120) leveraged such data 
to identify La and Ce cell types that are relatively enriched for 
the genes linked to anxiety disorders and other amygdala- 
related illnesses (Figure 3). Focusing on relative enrichment 
has the advantage of down-weighting cell types that are 
enriched for nonspecific psychopathology-linked genes. 
This approach revealed a group of ITC cells that were 
enriched for genes associated with neuroticism/negative 
emotionality, anxiety disorders, and depression. As de-
scribed above (in the section “New Insights From Rodent 
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Models of the Amygdala”), work in rodents indicates that 
ITCs play a key role in processing Pavlovian threat and can be 
modulated by prefrontal biasing signals. Taken together, 
these observations prioritize ITCs as a target for mechanistic 
follow-up work. Basic research in animals can leverage cell 
type–specific perturbation and recording tools to clarify 
their role in local microcircuits and their relevance to psy-
chiatrically relevant behavioral phenotypes. While chal-
lenging, human translational research can assess whether 
cell type–specific hypotheses are fruitful for understanding 
the macroscopic function of the human amygdala and other 
brain regions (see the online supplement for additional 
details and examples). Together, these basic and transla-
tional studies can be used to prioritize the cell types that are 
most likely to be involved in psychiatric disorders.

Prioritized cell types provide a target for therapeutics 
development. Efforts to develop improved tools for targeted 
interventions are ongoing. This includes the development of 
viral vectors that can be delivered across the primate blood- 
brain barrier (246–250), the identification of enhancers, 
promotors, and other regulators to restrict expression to 
specific amygdala cell types (e.g., 251), and innovations in 
genetically encoded cargo that could be used to modulate the 
activity of these cells at the scale of the human brain (e.g., 
designer receptors exclusively activated by designer drugs) 
(252–257). Pharmacological treatment strategies can also 
target cell types, by identifying receptors that are enriched on 
the cell type of interest. For example, Kamboj et al. (120) 
showed that anxiety-related ITCs are enriched for neuro-
peptide FF receptor 2 (NPFFR2), and preclinical research 
hints that NPFFR2 treatments may buffer the effects of stress 
(258–261) (Figure 3). While systemic pharmacological ap-
proaches are more likely to have adverse off-target effects 
than gene therapies (via their impact on other cell types in 
and outside of the amygdala), this provides another potential 
pathway to developing new treatments for maladaptive fear 
and anxiety.

More broadly, this body of work showcases some ways in 
which cell types can be leveraged to generate novel hy-
potheses about the neurobiological mechanisms underlying 
amygdala-related psychopathology and inform the devel-
opment of new treatments. The utility of this approach is 
likely to increase over time as more data and consensual 
cellular taxonomies become available for the amygdala and 
other regions.

CONCLUSIONS

Amygdala-related disorders impose a staggering burden on 
public health, and existing treatments are far from curative 
for many (6, 11). Addressing this burden will require the 
development of interventions that are more effective, du-
rable, and tolerable. Rising to this challenge requires a frank 
recognition of the strengths and weaknesses of the theo-
retical canon that has built up around “the amygdala” and an 
embrace of models centered on nuclei and cell types. 
Translational work in animals can be used to develop hy-
potheses that can be tested in healthy and diseased humans. 
Although this path will require exceptional creativity and 
effort, it is clear that we must begin to more honestly reckon 
with the amygdala’s functional-neuroanatomical complexity 
if we are going to understand its role in neuropsychiatric 
disease.
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Supplementary Note: Cell-type informed neuroimaging task design 

Different amygdala-activating tasks likely recruit distinct cellular populations 

As detailed in the main report, work in rodents makes it clear that different stimuli, tasks, 
and behavior are dependent on distinct types of amygdala cells, often within the same 
nucleus. This is likely true of the human amygdala as well. As such, different stimuli, tasks, 
and behavior represent non-equivalent probes of amygdala functional neuroanatomy. In 
fact, recent work from our group and others shows that variation in amygdala activation is 
weakly correlated across amygdala-activating tasks (Grogans et al., 2024; Villalta-Gil et al., 
2017). Variation in amygdala reactivity to emotional faces, for instance, tells us next-to-
nothing about amygdala reactivity to anticipated threat (Figure S1). Likewise, activation in 
the amygdala and other regions shows task-dependent associations with psychiatric 
phenotypes. A recent CBMA of anxiety disorders reported dramatically different neural 
“hits,” depending on whether illness was viewed through the lens of “emotional” or 
“cognitive” tasks (Chavanne & Robinson, 2021). Among first-year university students, 
photographs of delicious food and erotica both robustly recruit the nucleus accumbens 
(NAC), but variation in food reactivity selectively predicts freshman weight gain, whereas 
erotica reactivity selectively predicts sexual desire and number of sexual partners (Demos 
et al., 2012). Anticipated threat potently activates the BST, a key division of the EA. 
Photographs of fearful and angry faces produce an even stronger effect. Yet only uncertain-
threat is associated with variation in the risk-conferring N/NE phenotype (Grogans et al., 
2024). These kinds of observations are consistent with the idea that different neuroimaging 
tasks recruit different sets of cells and that it is the activity of these cells, not the region, that 
co-varies with psychiatric phenotypes. As such, the choice of task is critical for 
understanding the neural systems governing variation in risk, resilience, symptom severity, 
and diagnostic status. 
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FIGURE S1. Different stimuli can activate the same region, but differentially predict risk for psychiatric 
illness. (a) Uncertain-threat anticipation, certain-threat anticipation, and negative emotion faces all activate 
the BST. Bars depict mean standardized ROI activation relative to the respective baseline conditions for each 
ROI (spatially unsmoothed data). Whiskers depict standard errors. Inset depicts the anatomically defined BST 
(green).  (b) Yet BST BOLD activation is only associated with variation in the risk-conferring N/NE during the 
anticipation of uncertain threat (orange). Other associations were not significant. Bars depict standardized 
coefficients for each robust regression model. Whiskers indicate standard errors. Adapted with permission 
from (Grogans et al., 2024). Abbreviation—BST, bed nucleus of the stria terminalis. 

 
Leveraging insights gleaned from animal models mandates coordinated approaches 
Early neuroimaging research was notably effective at bringing animal research to bear on 
our understanding of the human mind and brain (Büchel et al., 1998; Kastner & Ungerleider, 
2000; Knutson et al., 2001; LaBar et al., 1998; Postle et al., 2000). Leveraging tasks and 
hypotheses adapted from studies of working memory, reward anticipation, and Pavlovian 
conditioning in rats and monkeys, this work (a) confirmed that homologous regions are 
involved across species and (b) laid the groundwork for understanding how these regions 
contribute to human-specific faculties (e.g., verbal working memory). As our understanding 
of the mouse amygdala brain continues to deepen, this kind of coordinated cross-species 
approach remains critical. Delivering on the promise of translational research will require 
cleverly incorporating insights from rodent studies of cell-types into human neuroimaging 
studies. This can be achieved by designing tasks that specifically target particular cell-types 
or, at minimum, developing tasks and analytic approaches humans that are strongly rooted 
in animal research and adequately validated. Tasks aimed at understanding fear and anxiety, 
for instance, should produce robust increases in distress and psychophysiological arousal 
(Fox et al., 2018). Likewise, based on work in rodents, we probably would not expect to see 
a robust effect of Pavlovian- or instructed-threat cues on amygdala activation when 
aggregating across disparate nuclei (Grogans et al., 2024; Wen et al., 2022). Instead, we might 
predict nucleus-specific changes in bulk activation, multivoxel patterns of activation, or 
functional connectivity.  
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This is not hypothetical; this kind of conceptual approach has been successfully deployed in 
other areas of cognitive neuroscience. For example, it has been used to understand how 
concepts are encoded in the brain. To do so, researchers built on the identification of 
hippocampal "grid cells" in mice, cells that fire any time a mouse traverses specific hexagonal 
locations in two-dimensional space (Rowland et al., 2016). Neuroimaging work confirmed 
that humans show similar grid-like activation patterns when navigating a two-dimensional 
virtual-reality environment (Doeller et al., 2010). This work was then extended to show that 
grid-like neural codes are also engaged when humans navigate two-dimensional "conceptual 
spaces,” as when comparing individuals on their level of competence and popularity (Aronov 
et al., 2017; Bao et al., 2019; Constantinescu et al., 2016; Liang et al., 2024; Park et al., 
2021). These data illustrate how neuroimaging research can be used to understand the 
contribution of cell-types identified in animals to species-general and human-specific 
behaviors.   
 

Challenges for amygdala-related task design 

Cell-type targeted neuroimaging research requires concrete predictions about the expected 
activity of specific cell-types and tasks with high face or process validity. For example, one 
could use Pavlovian-threat/extinction tasks with parameters that closely match those used 
in rodents (face validity) or tasks that involve adjudicating between Ce-dependent behaviors 
(process validity). The neuroimaging outcome must be well aligned with predictions derived 
from animal models. If one expects mutually inhibitory cellular populations, then bulk 
increases in Ce activation will be insufficient.  
 
Novel computational models and data analytic strategies—like those used to study grid-
codes—must be developed for interrogating amygdala cells. For example, rodent models 
indicate that threat and reward are processed by different sets of anatomically overlapping 
and mutually inhibitory cells in the La. As such, one would not predict differential levels of 
overall La activation when contrasting threat and reward trials (Figure S2). However, these 
cells are not uniformly distributed. Different voxels likely contain varying mixtures of the 
two cell-types. From the perspective of fMRI, this will be associated with distinct multivoxel 
patterns of activation (Figure S2). In the absence of strong evidence that these cells are 
similarly distributed across individuals, it will be fruitful to identify multi-voxel patterns at 
the individual level, as is often done in studies of vision, attention, and working memory (e.g., 
Lewis-Peacock & Postle, 2008). Rodent models also show that threat- and reward-sensitive 
cells in La differentially project to Ce and NAC, respectively. This suggests that it will also be 
fruitful to explore potential differences in task-related functional connectivity in humans. 
These examples illustrate the kinds of cell-type targeted predictions that could be tested in 
human fMRI studies (for additional examples, see Drzewiecki & Fox, 2024). 
 



Page 4 of 6 

 

FIGURE S2. Translating cellular insights gleaned from animal models to human neuroimaging. (a) 
Rodent models have identified intermingled populations of mutually inhibitory La cells that are active during 
threat and reward learning, respectively. (b) This would be expected to yield similar levels of overall La 
activation across conditions. (c) However, because different voxels contain varying ratios of threat- and 
reward-sensitive cells, we would expect that the multivoxel pattern of La activation would differ across trials 
as a function of trial type. Rodent models suggest that threat-and reward-sensitive cells differentially 
communicate with other brain regions, and this could be explored in humans using measures of task-related 
functional connectivity. Note: Together, the left and right La encompass ~136 2-mm3 fMRI voxels.  
Abbreviation—BOLD, blood-oxygen-level-dependent fMRI signal; La, lateral nucleus; v#, voxel.  
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