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Precision behavioral phenotyping as a 
strategy for uncovering the biological 
correlates of psychopathology

Jeggan Tiego    1 , Elizabeth A. Martin2, Colin G. DeYoung3, Kelsey Hagan    4, 
Samuel E. Cooper    5, Rita Pasion6, Liam Satchell7, Alexander J. Shackman    8, 
Mark A. Bellgrove1, Alex Fornito    1 & the HiTOP Neurobiological Foundations 
Work Group*

Our capacity to measure diverse aspects of human biology has developed 
rapidly in the past decades, but the rate at which these techniques have 
generated insights into the biological correlates of psychopathology has 
lagged far behind. The slow progress is partly due to the poor sensitivity, 
specificity and replicability of many findings in the literature, which 
have in turn been attributed to small effect sizes, small sample sizes and 
inadequate statistical power. A commonly proposed solution is to focus 
on large, consortia-sized samples. Yet it is abundantly clear that increasing 
sample sizes will have a limited impact unless a more fundamental issue 
is addressed: the precision with which target behavioral phenotypes are 
measured. Here, we discuss challenges, outline several ways forward and 
provide worked examples to demonstrate key problems and potential 
solutions. A precision phenotyping approach can enhance the discovery and 
replicability of associations between biology a nd p sy ch op at ho logy.

A comprehensive understanding of psychopathology requires a sys-
tematic investigation of functioning at multiple levels of analysis, from 
genes to brain to behavior1,2. The development and widespread use of 
new technologies—including magnetic resonance imaging (MRI) and 
inexpensive genetic assays—promised to transform our understanding 
of psychiatric disorders3 and lead to biomarkers that would enhance 
diagnosis, treatment and prognosis4. However, increasing technologi-
cal advances and sophistication in the acquisition and analysis of these 
data have generally failed to produce consistent research findings with 
broad and significant clinical relevance to the diagnosis and treat-
ment of mental disorders5. Biology–psychopathology associations are 
typically small6, often fail to replicate7 and generally lack diagnostic 

specificity8–10. In short, despite decades of work, thousands of studies 
and hundreds of millions of research dollars, modern neuroimaging 
and genetic tools have largely failed to uncover clinically actionable 
insights into psychopathology11,12.

Modest effects and poor replicability have prompted calls to 
establish consortia-sized samples to identify reproducible biology–
psychopathology associations7, with theoretical and empirical stud-
ies indicating that problems of low power and replicability can be 
addressed with sample sizes ranging from the thousands to tens of 
thousands6,7. This approach has become standard in molecular genet-
ics and has yielded reliable genetic ‘hits’ for several psychiatric disor-
ders12. Recent analyses suggest a similar approach may be necessary for 
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Note that we focus on mental health measures in our manuscript 
because: (1) the limitations of such measures are rarely discussed 
in comparison with the extensive literature devoted to improving 
biological measures; (2) prevalent practices to measure behavior are 
sub-optimal; and (3) addressing these sub-optimal practices is argu-
ably the most cost-effective and quickest way of improving current 
methodologies. It also merits comment that, while this Review is cen-
tered on psychiatric phenotypes, biological measures are also prone 
to error and may equally contribute to the problems of weak signal in 
biology–psychopathology association studies18. Thus, our proposals 
parallel considerable efforts devoted to improving the validity and 
accuracy of imaging-derived phenotypes13–15, which is sometimes also 
called precision phenotyping.

The effect of measurement imprecision on 
detecting and replicating associations between 
biology and psychopathology
An important step in understanding and treating psychiatric disor-
ders is the identification of pathophysiological mechanisms. Doing 
so requires the discovery of robust associations between biology and 
psychiatric phenotypes, an endeavor that is fundamentally constrained 
by the validity and reliability of the measured phenotypes. Validity 
concerns the correspondence between a psychological measure and 
the construct it is designed to measure. If a psychological measure 
fails to measure a real entity, or changes in the state of that entity fail 
to produce systematic variations in the psychological measure, any 
analyses that rely on the psychological measure will be inaccurate. 
Reliability refers to the consistency of a measure across items, scales, 

neuroimaging studies6. Other investigators have focused on improving 
the validity and accuracy of neuroimaging measures, through the use 
of sophisticated data acquisition techniques13, improved denoising 
techniques14 and individually tailored analyses15. Similarly, in genetics, 
growing interest in moving beyond common genetic variation to study 
high-effect rare variants mandates an order of magnitude increase in 
sample size16.

In this Review, we suggest that such attempts will have limited 
success unless we develop more precise or statistically optimized psy-
chiatric phenotypes (that is, observable characteristics or traits). We 
begin by briefly summarizing the adverse consequences of phenotypic 
imprecision for discovering reproducible biology–psychopathology 
associations and highlight some of the most common types of impre-
cision. We then provide concrete recommendations for precision 
phenotyping that will help overcome these challenges. Throughout the 
Review, we provide worked examples of key concepts, using genetic 
data obtained at the baseline wave (n = 2,218) and behavioral data 
obtained from the 2-year follow-up wave (n = 5,820) of the Adolescent 
Brain Cognitive Development (ABCD) study (behavioral data, release 
3.0; genetic data, release 2.0)17. These examples support the conclusion 
that phenotypic imprecision can thwart the consistent detection of 
potentially important biology–psychopathology associations. In each 
case, we describe countermeasures that can be deployed to bolster 
precision and reliability. Taken together, these strands of psychometric 
theory and empirical data suggest that the systematic adoption of pre-
cision phenotyping has the potential to substantially accelerate efforts 
to understand the neurogenetic correlates of psychopathology and, 
ultimately, set the stage for developing more effective clinical tools.

Box 1

The relationship between measurement reliability and observed 
effect size
The relationship between measurement reliability and the observed 
effect size20 is pertinent to many fields of research. Here, we discuss the 
issue in relation to psychiatric phenotypes in the context of associations 
with neurobiology and/or genetics. Constraints on the precision with 
which psychological attributes can be measured are captured by true 
score theory (also known as classical test theory), according to which,  
a person’s observed score on a psychological measurement reflects 
their ‘true score’ and ‘random measurement error’82:

x = t + e (1)

where x is the observed score, t is the true score, and e is random 
measurement error. Note that the error term, e, only represents 
random error, so the true score, t, can include systematic error 
unrelated to the construct of interest.

Thus, according to true score theory, all psychological 
measurement incorporates measurement error (that is, ‘error-in-
variables model’49). Measurement error attenuates associations 
between variables49. This bias is intuitively demonstrated with 
respect to the Pearson coefficient of product-moment correlation (r), 
which forms the basis of many analyses conducted in the literature 
on biology–psychopathology associations and can be used as an 
estimate of effect size. It has been demonstrated that the correlation 
coefficient, r, which is the sample realization of the population 
parameter rho (ρ), is always a biased estimate of the true association 
between two variables, x and y49:

rox,oy = rtx,ty√(rxxryy) (2)

where rox,oy is the observed correlation, rtx,ty is the true  
correlation, and ryy and rxx are the reliability coefficients for  
variables x and y.

In most cases, the measurement error will be uncorrelated 
between the variables, resulting in greater dispersion in the data and 
an attenuation bias of the correlation coefficient and, by extension, 
smaller and less accurate effect sizes38,49. Relatedly, the standard 
error (s.e.) for the correlation coefficient increases as a function of 
smaller samples, n, and smaller effect sizes, r2, resulting in reduced 
efficiency of estimation83.

s.e.r =√
1 − r2
n − 2 (3)

Since the probability value of the correlation coefficient is based 
on the distribution of Student’s t with n − 2 degrees of freedom 

(t = r√n−2
√1−r2

), smaller effect sizes, as well as smaller samples, lead to 

lower statistical power. These issues are especially pertinent to 
measuring psychopathology phenotypes in biomarker research and, 
critically, will not be resolved simply by increasing sample sizes38. 
Assuming sample homogeneity, increased sample sizes will only 
reduce sampling variability (√n) but not proportionally decrease 
measurement error. The estimates themselves will remain 
downwardly biased if measurement error is present. Finally, inasmuch 
as the resulting sample statistic fails to converge on the correct 
population parameter, it is less likely to be replicated in subsequent 
samples21.
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occasions or raters; and is the inverse of measurement error. Lower 
reliability (higher error) contributes to noisy estimates and decreased 
accuracy of rank-ordering of individuals when measuring biology–psy-
chopathology associations19. In fact, reliability imposes an upper limit 
on the magnitude of linear associations that can be detected (that is, 
observed biology–psychopathology associations are inversely pro-
portional to measurement reliability), mandating larger and more 
expensive samples for adequate power and reproducibility20 (Box 1). 
In sum, adequate validity and reliability are necessary for identifying 
robust and meaningful biology–psychopathology associations20,21.

It is noteworthy that phenotypic precision is a necessary, but not 
sufficient, condition for uncovering biology–behavior associations. For 
example, measurement of human intelligence is psychometrically well 
developed and yet our understanding of the neurobiology and genetics 
of intelligence is incomplete. The validity and reliability of psychiatric 
phenotypes can be compromised by a variety of factors, which we col-
lectively refer to as phenotypic imprecision. In this section, we highlight 
common and pernicious causes of phenotypic imprecision.

Sampling biases
Different research aims demand specific sampling strategies. For stud-
ies seeking to identify biology–psychopathology associations, it is 
important to have samples that are representative of the population 
of interest and that maximize statistical power for this research design. 
Sampling biases, non-representative samples and generalizability 
issues have been broadly discussed in the literature22, but several spe-
cific aspects of sampling bias are particularly relevant to the meas-
urement of psychiatric phenotypes in biological association studies. 
As a primary example, most psychiatric neuroimaging and genetic 

research has focused on examining case–control differences defined 
by traditional diagnostic frameworks, such as the Diagnostic and Sta-
tistical Manual for Mental Disorders (DSM-5) and the International 
Classification of Diseases (ICD-11). These frameworks have question-
able reliability and validity23, and likely show a limited correspondence 
with biological correlates (Box 2). Indeed, there is ample evidence that 
psychiatric phenotypes are dimensional23, indicating that distinctions 
between cases and controls based on arbitrary clinical cut-points can 
artificially reduce statistical power for detecting associations with 
biological measures; the so-called curse of the clinical cut-off’24 (but 
see ref. 25). The approach may also complicate attempts to identify 
at-risk individuals with subclinical/subthreshold symptomatology26 
and may result in only a subpopulation of the most severely affected 
individuals being sampled, leading to problems such as Berkson’s bias 
and the clinician’s illusion.

A further complication arises with the recruitment of appropri-
ate control groups. Researchers often exclude controls who endorse 
past or current DSM-5 or ICD-11 diagnoses or other signs of morbidity, 
resulting in an unrepresentative ‘super control’ group. When compared 
with a group of patients meeting a diagnostic threshold, the result-
ing study design embodies an extreme-groups approach rather than 
a simple dichotomization of a dimensional variable. Such designs, 
when applied to the study of dimensional phenomena, are known 
to confer biased effect estimates27. We acknowledge that traditional 
approaches to clinical description and diagnosis of mental disorders 
have clinical utility26. However, in this Review, we explore the applica-
tion and implications of refined approaches to studying the biological 
correlates of psychopathology in research rather than clinical contexts. 
The importance of ethnic and demographic diversity with respect 

Box 2

Limitations of traditional approaches to psychiatric nosology
Existing diagnostic systems, such as DSM-5 and the ICD-11 have 
clinical utility, facilitating treatment and communication between 
mental health professionals and consumers of mental health 
services84. However, the psychopathological concepts invoked by 
modern nosology may have a tenuous relationship with biological 
correlates, undermining our attempts to link measurement of 
behavioral phenotypes with biomarkers3. The limitations of such 
nosological schemes for informing our understanding of the biology 
of mental disorders have long been recognized. Initially developed 
to capture psychiatric signs and symptoms without detailed 
consideration of etiology or pathophysiology3, diagnostic criteria 
have since been reified as reflecting, rather than merely indexing, the 
natural phenomenology of the proposed disease entities themselves, 
resulting in a conflation of diagnostic criteria with the proposed 
underlying disorder85. Philosophically, the field has fallen prey to 
the question-begging fallacy, in which diagnostic categories are 
investigated as if they are real entities without first asking whether the 
categories are valid in the first place.

The limitations of traditional nosologies introduce a substantial 
source of phenotypic imprecision due to questionable validity. 
Problematically, current diagnostic systems define mental disorders 
as polythetic-categorical constructs (that is, diagnoses defined by 
an established minimum number of criteria, not all of which are 
required for diagnosis). Prototypical symptoms occurring in pre-
specified numbers and combinations are conceptualized as forming 
discrete taxa, underpinning binary diagnostic decisions. However, 
it is known that mental disorders have a dimensional rather than a 

taxonomic structure61, with the frequency and severity of symptoms 
extending as a continuum from the clinical to the subclinical and 
into the non-clinical range. A related issue is that individuals are 
generally diagnosed using hierarchical exclusion rules in diagnostic 
checklists, by which comorbid conditions may be ruled out based 
on meeting criteria for another disorder. These factors can lead 
to artificial ‘prototypical cases’ with elevated symptoms and no 
comorbidity, as well as distort the covariance structure of the data, 
which can impact subsequent analyses86. Additionally, focusing on a 
particular diagnostic category assumes homogeneity of symptoms 
and mechanisms (the homogeneity assumption—the assumption 
that different people with the same psychiatric diagnosis are 
phenotypically similar), but individuals with the same diagnosis may 
exhibit little to no overlap in symptoms (the heterogeneity problem—
the grouping of cases with divergent symptom presentations into 
the same diagnostic category, or the grouping of symptoms with 
divergent etiology, pathophysiology, course and/or treatment 
response)34. Co-morbidity between putatively distinct disorders 
(that is, the comorbidity problem—psychiatric disorders co-occur 
in the same individuals more often than would be expected for 
independent entities, suggesting shared phenomenology and 
etiology)87, and issues of arbitrary clinical cut-offs and ignoring of 
the clinical significance of subthreshold symptomatology are well-
documented limitations of current psychiatric taxonomies88. These 
limitations obfuscate the search for the neurobiological correlates 
of psychiatric symptoms and constitute an impediment to future 
research in this domain89.
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to representativeness, ethnic matching of biological measures and 
generalizability of predictions of behavior from biology, has also been 
discussed in the literature28,29. Crucially, some cross-cultural initiatives 
in population neuroscience and genetics have been developed to meet 
this need29–31.

Minimal and inconsistent phenotyping
The sheer cost and practical challenges of large-scale recruitment and 
testing often mean that the time and resources available for psychiatric 
phenotyping are limited32. Minimal or ‘shallow’ phenotyping, is one of 
the more commonly encountered causes of phenotypic imprecision in 
biological studies of psychopathology32. Minimal phenotyping is one-
shot assessment using single, and sometimes abbreviated, scales. This 
will increase the proportion of occasion-specific state variance (error) 
compared with averaging across two or more occasions, thereby attenu-
ating biology–psychopathology associations. Furthermore, minimal 
phenotyping may fail to capture important aspects of psychopathology 
that are associated with biological measures.

Aggregation of data in consortia is further complicated by sub-
stantive differences in phenotypic assessment across sites. Numerous 
scales and questionnaires are available for assessing common psychi-
atric conditions (for example, depression) and these measures vary 
greatly in their inclusion and emphasis of symptoms33. Minimal pheno-
typing exacerbates the heterogeneity problem34, because superficially 
similar cases—for instance, individuals self-reporting a lifetime history 
of depression in response to a single self-report probe—likely diverge 
on important, but unmeasured characteristics, dampening effect sizes 
and power. For example, it has been demonstrated35 that increasing 
sample sizes for neuroimaging research of schizophrenia may result in 
samples that are more heterogeneous, which can lead to lower predic-
tion accuracy in machine learning analyses. This aligns with evidence 
that people diagnosed with schizophrenia and other disorders often 
show considerable heterogeneity in biological phenotypes36. Similarly, 
large clinical cohorts forming the reference samples for genome-wide 
association studies (GWAS) may also be heterogeneous in terms of 

clinical phenomenology, which is not revealed by minimal phenotyp-
ing37. Thus, despite the advantages of large samples, counterintuitively, 
increasing sample sizes through consortia-like data pooling may result 
in decreased, rather than increased, signal-to-noise ratio. Therefore, 
the quest for ever-larger sample sizes, without consideration of preci-
sion phenotyping, is neither efficient nor economical, and will not, on 
its own, ensure the discovery and replicability of biology–psychopa-
thology associations38.

Phenotypic complexity
The use of raw behavioral scores in simple bivariate correlational (or 
related) analyses with biological variables assumes a unifactorial and 
non-hierarchical structure of the target phenotype. However, psy-
chiatric phenotypes often have a multidimensional and hierarchical 
structure (that is, phenotypic complexity). Collapsing complex, mul-
tidimensional psychiatric phenotypes (for example, depression) into 
unitary scores has the potential to obscure biologically and clinically 
important sources of variance (for example, anhedonia versus guilt)39. 
Binary diagnostic labels create similar problems. Apart from multi-
dimensionality, psychiatric phenotypes may also exhibit a complex 
hierarchical structure40. An example of this hierarchical organization 
is the Hierarchical Taxonomy of Psychopathology (HiTOP) (Box 3 and 
Fig. 1). At the top of the hierarchy is the p-factor, a broad transdiagnostic 
liability to all forms of psychopathology41. Situated below the p-factor 
are narrower dimensions—internalizing, thought disorders, disinhib-
ited externalizing and antagonistic externalizing—specific to particular 
domains of psychopathology42. Each of these dimensions, in turn, sub-
sumes still narrower symptom dimensions (for example, fear, distress 
and substance abuse). Too often, simple summary scores ignore this 
structure, combining both broad and narrow sources of variance43, 
leading to attenuation of biology–psychopathology associations.

We show in example 1 of the Supplementary Information how fail-
ing to differentiate these multidimensional and hierarchical sources 
of variance from each other can confound relations with biological 
parameters. We provide an illustration of these concepts using Child 

Box 3

The Hierarchical Taxonomy of Psychopathology
The Hierarchical Taxonomy of Psychopathology (HiTOP) model is a 
potentially useful framework for precision psychiatric phenotyping. 
HiTOP is a data-driven approach to psychiatric nosology that 
organizes symptoms into homogeneous, hierarchically organized 
dimensions (Fig. 1)42. The problem of arbitrary diagnostic thresholds, 
subthreshold/subclinical symptomatology and low power is 
addressed by measuring psychopathology continuously with no 
artificial demarcation point designating health from disorder42. The 
comorbidity problem and heterogeneity problem are addressed by 
organizing co-occurring problems into homogeneous dimensions42. 
For example, the high comorbidity of major depressive disorder 
and generalized anxiety disorder are seen to reflect the operation of 
common etiological mechanisms, which are captured by the distress 
subfactor, which is situated under the broader internalizing spectrum 
within the HiTOP model. Thus, the broadest dimensions, reflecting 
common liabilities to psychopathology, are situated at the top of 
the hierarchy with the narrowest traits and symptom components 
situated at the bottom, reflecting liabilities to specific problems.

The development of an omnibus measure of the HiTOP model 
is nearing completion and will be open-source and freely available 
for use without charge in both computerized and paper-and-pencil 

formats90. In the meantime, several existing instruments can be 
used to reliably assess HiTOP dimensions in youth and adults91. 
HiTOP-conformant measures enable broadband, transdiagnostic 
assessment of psychopathology at multiple levels of the hierarchy, 
from broad superspectra dysfunction and spectra to narrower 
subfactors and empirical syndromes. HiTOP-conformant measures 
focus on narrow homogeneous and unidimensional constructs 
with high discriminant validity facilitating high reliability and valid 
inference43,66 for association studies with biology. At the lowest 
levels of the hierarchy, HiTOP encompasses even narrower symptom 
components (for example, anhedonia, insomnia) and maladaptive 
traits42. The latter provides a measure of the lower range and adaptive 
end of the psychopathology continuum. Combining measures of 
traits and psychopathology thus improves phenotypic resolution 
(that is, the reliability or precision of measurement of a phenotype 
along the full spectrum of the latent trait continuum). Notably, 
the higher order spectra of the HiTOP model are invariant across 
sexes and different age groups92. HiTOP dimensions, including the 
broad superspectra and spectra, as well as narrower subfactors 
and symptom components, can serve as phenotypic targets for 
neuroscience-informed Research Domain Criteria (RDoC) domains93.

http://www.nature.com/natmentalhealth


Nature Mental Health | Volume 1 | May 2023 | 304–315 308

Review article https://doi.org/10.1038/s44220-023-00057-5

p-factor

Emotional dsyfunction Psychosis Externalizing

Somato-
form

Thought
disorder

Detach-
ment

Disinhibited
externalizing

Antagonistic
externalizingInternalizing

Sexual
problems

Eating
pathology

Substance
abuse

Antisocial
behaviorFear Distress Mania

Empirical syndromes

Symptom components and maladaptive traits

Superspectra

Spectra

Subfactors

Fig. 1 | The HiTOP model. The broadest dimensions, reflecting common 
liabilities to psychopathology, are situated at the top of the hierarchy with 
the narrowest traits and symptom components situated at the bottom, 
reflecting liabilities to specific problems. Gray boxes with broken lines indicate 

hypothesized, but not yet confirmed, constructs. The broken single-headed 
arrows pointing to 'Mania' reflect preliminary relationships awaiting further 
confirmatory evidence.

Box 4

Structural equation modeling
Hierarchical modeling, measurement invariance, mixture modeling 
and the T(M-1) model can be done within an SEM framework. SEM 
is a statistical technique that combines factor analysis, canonical 
correlation and multiple regression94. SEM can be used to extract 
the common variance from factor indicators of the construct of 
interest. The resulting factor, also known as a latent variable, is a purer 
measure of the construct of interest because only variance common 
to all variables that reflect the dimension of interest are included as 
shared variance94. In the common factor model estimated within 
the SEM framework, reflective latent variables (that is, an underlying 
factor is conceptualized as causing the covariance in the indicators) 
are estimated by decomposing observed variables into variance 
shared with the other factor indicators and variance that is unique to 
the variable (that is, variance attributable to a separate construct and 
measurement error). The formula is expressed as:

xi = ax + λxξi + θεi (4)

where xi is a measured variable (that is, observed or manifest 
variable), ax is an intercept, λx is a factor loading determining the 
influence of a factor ξi on the measured variable, and θεi is the unique 
variance or error of the measured variable that is not explained  
by the factor loading (Fig. 2). This model formalizes the following:  
(1) the target psychopathology phenotype is unobserved and 
must be inferred by one or more measured variables (for example, 
questionnaire items); (2) measured variables are imperfect indices of 
the target construct and incorporate measurement error; (3) factor 
indicators are not necessarily equally important measures of the 
target latent variable, as indicated by differences in the strength of 
the factor loadings (that is, λx).

In a structural regression model, SEM enables estimation of 
regression path coefficients between factors within the model. 
Thus, SEM estimates the empirical relationships between predictor 
variables and criterion variables with measurement error excluded 
from the final model94. An additional advantage of using SEM  
is that hypothesized multiple dependence relationships can be 

examined concurrently, along with complex interactions94.  
By contrast, some researchers use a two-step factor score 
regression technique in which factor scores estimates are 
derived from the latent variables as manifest variables and then 
incorporated into subsequent regression analyses. It is important 
to note that factor score estimates are not the same as latent 
variables due to factor score indeterminacy. In simple terms, 
factor score indeterminacy reflects the fact that an infinite set of 
factor scores can be estimated for the same analysis that will be 
equally consistent with the factor loadings. This is because the 
number of observed variables is less than the number of common 
and unique factors to be estimated95. The degree of factor score 
indeterminacy is related to the number of factor indicators and 
their communalities (that is, how much variance is explained in the 
variables by the factor) and is represented by a validity coefficient, 
which will vary between studies95. Factor score estimates can, 
therefore, misrepresent the rank ordering of individuals along 
the factor95. The degree to which factor score estimates preserve 
the correlations amongst the factors in the analysis (that is, 
correlational accuracy) and are not contaminated by variance 
from orthogonal factors (that is, univocality) will also vary between 
studies95. The use of factor score estimates can also potentially 
bias the parameter estimates of the regression models96. Thus, we 
recommend against this approach in favor of SEM.

Ideally, biological measurements should be incorporated  
directly into latent models to capitalize on the increased 
measurement precision and statistical power that these models 
afford (for example, ref. 97). However, SEM generally requires 
sample sizes greater than 20098. Thus, it may not be feasible for 
many research studies examining biological variables. Several SEM 
packages are commercially available, such as Mplus (http://www.
statmodel.com/), and freely available as open-source software, such 
as lavaan in R (https://lavaan.ugent.be/). The HiTOP Consortium 
provided a primer for conducting SEM research in the context of 
dimensional hierarchical models of psychopathology69 and there are 
several excellent entry-level texts for SEM, such as ref. 98.
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Behavior Checklist (CBCL) data from the ABCD study, which exhibits 
both multidimensionality and hierarchical structure. The CBCL is 
a multidimensional instrument that measures eight empirical syn-
dromes using eight distinct subscales. The CBCL can be modeled as 
having a hierarchical structure with variance attributable to three 
levels, which approximates the scoring system typically applied with 
this instrument. We used a bifactor model44 within a structural equa-
tion modeling (SEM) framework (Box 4 and Fig. 2) to separate these 
dimensions into three orthogonal (that is, uncorrelated) variance 
components and examined how much variance was unique to each 
level. The CBCL has three composite scales: (1) total problems, which 
summarizes the scores across the eight syndrome scales; (2) internal-
izing problems, which summarizes scores across the three internaliz-
ing scales; and (3) externalizing problems, which summarizes scores 
across the two externalizing scales. Common variance across the eight 
scales is quite reliable (rxx= 0.847), such that collapsing measurement 
of psychopathology into the unidimensional total problems score 
would result in attenuation of biology–psychopathology associations 
unique to the p-factor by just 7.9%, assuming perfect reliability of the 
biological measure.

Results are worse for the other two composite scales, internal-
izing problems and externalizing problems, where reliable variance 
uniquely attributable to these group dimensions is only 3.1 and 2.3% 
(rxx = 0.031 and 0.023), rendering these scales unreliable and unusable. 
We also demonstrate that high phenotypic complexity across the eight 
empirical syndrome scales leads to low residual variance for these 
individual scales (that is, an average of approximately 43.2% variance 
is unique to each scale).

Inadequate phenotypic resolution
The vast majority of biology–psychopathology association studies 
implicitly assume that measurement precision is uniform across the 
latent trait continuum, a concept referred to as phenotypic resolu-
tion40. Yet most measured psychiatric phenotypes lack sufficient 
coverage of the adaptive (low) end of the continuum, leading to 
differential phenotypic resolution across the range of the scale45. 
Consider anxiety. Low scores on a clinical scale are meant to rep-
resent the absence of pathological anxiety, but often there is little 
to no item content addressing the opposite end of the latent trait 
continuum. As a result, there will be high error at the low end of the 
scale, making it difficult to conduct robust individual differences 

research. This problem is known as a ‘multiplicative error-in-varia-
ble model’, in which the error is proportional to the distributional 
properties of the signal33. Attenuation bias will thus be present for 
participants who score at the lower end of the psychopathology con-
tinuum, which tends to be most individuals, particularly in studies of 
community-dwelling, non-clinical populations. The multiplicative 
error-in-variable model also results in marked heteroscedasticity 
(that is, the distribution of the residuals or error terms in a regression 
analyses is unequal across different values of the measured values), 
which reduces statistical power46.

Phenotypic resolution can be examined using item response 
theory (IRT; Box 4). IRT provides total information functions, which 
plot the measurement precision of a phenotype as a function of the 
standardized latent trait distribution47. Typically, for unipolar psychi-
atric phenotypes, reliability is unacceptably low (rxx < 0.6) below the 
mean48. Because reliability places an upper bound on associations 
with other variables49, this decrease in measurement precision can 
markedly decrease signal-to-noise ratio in biology–psychopathology 
association studies.

In example 2 of the Supplementary Information, we provide an 
illustrative example of poor phenotypic resolution using CBCL data 
from the ABCD study, with results demonstrating that only a small 
portion of the sample has reliable scores for most of the CBCL scales.  
Specifically, we find unacceptably low reliability, even for basic 
research purposes (rxx < 0.6), at or below one standard deviation 
below the mean for ten of the eleven scales (that is, all scales except 
the total problems scale). The average proportion across CBCL scales 
of the ABCD sample that would not have interpretable scores due to 
low phenotypic resolution was 37.2% and more than half of the sam-
ple had uninterpretable scores for three of the eleven CBCL scales. 
Thus, despite the promise of the ABCD study for providing a sample 
size sufficient to accurately assess biology–psychopathology asso-
ciations, a large proportion of participants from the ABCD study have 
CBCL scores with unacceptably low reliability, which will have the 
unfortunate and counterproductive goal of attenuating biology– 
psychopathology associations.

Measurement non-invariance
Another challenge to the accurate assessment of biology–psychopa-
thology associations is the assumption that a measure assesses a psy-
chiatric construct similarly across groups and measurement occasions 
(that is, measurement invariance)50. Yet there is ample evidence that 
measurement properties can vary (that is, non-invariance) across demo-
graphic groups (for example, sex) or unobserved or latent classes (that 
is, homogeneous subpopulations or subgroups, clusters or mixtures, 
embedded within the sample)51. Non-invariance can substantially bias 
results, because raw scores do not have the same substantive interpre-
tation across groups. For example, a raw score of 10 on a particular 
scale may not correspond to the same level of psychopathology in 
males and females.

Invariance testing provides a rigorous means of evaluating the 
equivalence of model parameters across groups by imposing a series 
of increasingly restrictive equality constraints on the model parameter 
estimates within a factor analytic framework50. Typically, four levels of 
invariance are evaluated: (1) configural invariance; (2) weak invariance; 
(3) strong invariance; and (4) strict invariance (Supplementary Table 3 
contains technical definitions)50. Unfortunately, only a small propor-
tion of studies test for full measurement invariance50; thus, combining 
raw scores across discrete groups (for example, sex and ethnicity) 
for biology–psychopathology associations remains problematic. In 
example 3 of the Supplementary Information, we provide a striking 
example of measurement non-invariance of the CBCL total problems 
scale (which is the most reliable scale of the CBCL)52 between male 
and female ABCD participants. Results demonstrate that CBCL raw 
scores are not comparable between male and female children at any 

λx1,4λx1,1

x1,1 x1,2 x1,3 x1,4

λx1,2 λx1,3

ξ

θε1,1 θε1,2 θε1,3 θε1,4

Fig. 2 | The reflective latent variable model. Reflective latent variable  
(common factor) model in which the unobserved psychobiological attribute 
(factor or latent construct; ξ), is conceptualized as explaining the variance/
covariance in the measured variables (x1,1–x1,4) via their factor loadings 
(λx1,1–λx1,4), which are linear regression coefficients. The indicator error variances 
(also residual variances or uniquenesses; θε1,1−θε1,4) capture the variance in each 
measured variable not explained by the factor (that is, variance not shared with 
the other indicator variables).
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point along the latent trait continuum. Thus, any study that pools the 
results on the CBCL total problems scale for male and female children 
and tests the association with biological variables will draw erroneous 
conclusions.

The heterogeneity problem
The heterogeneity problem is increasingly recognized as a key chal-
lenge for biological studies of psychiatric illness34. Heterogeneity 
can be described at person-centered and variable-centered levels34. 
Person-centered heterogeneity refers to the presence of clusters or 
subtypes within groups, such as a group of individuals diagnosed with 
major depression. To the extent that such clusters or subtypes are 
unrecognized and associated with distinct biological signatures, they 
will attenuate biology–psychopathology associations (that is, mix-
ing apples and oranges). This problem is exacerbated in case–control 
research because traditional DSM and ICD diagnoses likely encompass 
phenomenologically, etiologically and biologically heterogeneous 
syndromes (Box 2). The result is the so-called ‘jingle fallacy’, in which 
divergent phenomena are arbitrarily equated, in this case because 
of the application of a common term53. Variable-centered heteroge-
neity describes admixtures of symptoms with divergent etiology, 
pathophysiology, course and/or treatment response54 or a failure to 
differentiate between narrower homogeneous and unidimensional 
symptom components.

Both person-centered and variable-centered heterogeneity have 
emerged as a critical issue in depression research. For example, an 
analysis of 3,703 participants in a clinical trial for the treatment of 
depression revealed a remarkable degree of person-centered disorder 
heterogeneity with 1,030 unique symptom profiles identified using 
the Quick Inventory of Depressive Symptoms (QIDS-16), 864 (83.9%) 
of which were endorsed by five or fewer participants and 501 (48.6%) 
were endorsed by only one participant55. Thus, methodologies that 
explicitly accommodate potential clinical sample heterogeneity are 
a promising way forward in psychiatric research56. There is also evi-
dence of variable-centered heterogeneity in depression, which has a 
clear multifactorial structure despite often being treated as a unitary 
construct based on sum scores on inventories, such as the Hamilton 
Rating Scale for Depression57. Indeed, three distinct genetic factors 
were identified that explained the co-occurrence of distinct subsets of 
DSM criteria and symptoms: cognitive and psychomotor symptoms, 
and mood and neurovegetative symptoms58. Heterogeneity has also 
been identified across depression symptoms in terms of etiology, 
risk factors and impact on functioning57. These findings suggest that 
the analysis of narrower homogeneous and unidimensional symp-
tom components or even individual symptoms is likely to be a more 
informative and productive avenue for future biology–psychopathol-
ogy association studies.

Method bias
Method bias (sources of systematic measurement error stemming from 
the measurement process, such as method effects, for constructs) is a 
common, yet often neglected, potential source of measurement error 
in biology–psychopathology association studies. Sources of method 
bias include response styles commonly encountered in self-report, 
such as social desirability (that is, responses attributable to the desire 
to appear socially acceptable), acquiescence (‘yea-saying’), disaquies-
cence (‘nay-saying’), extreme (selecting extreme response categories in 
Likert-type ordinal scales), and midpoint (selecting middle categories 
in Likert-type ordinal scales) response styles59. Method bias can distort 
dimensional structure, obscure true relationships between constructs 
and compromise validity60,. Method bias is caused by method factors, 
which describe sources of systematic measurement error that contrib-
ute to an individual’s observed score, thus attenuating subsequent 
analyses of association60. Indeed, method biases are one of the most 
important sources of measurement error59. Between one-fifth and 

one-third (18–32%) of the variance in self-report measures is attribut-
able to method factors60. Method factors and the resulting method 
bias represent serious threats to study validity because, as systematic 
sources of error variance, they attenuate and otherwise distort the 
empirical relationship between variables of interest59.

Recommendations for precision psychiatric 
phenotyping
In this section, we outline some recommendations for enhancing the 
precision of psychiatric phenotyping and, ultimately, increasing the 
robustness and reproducibility of biology–psychopathology associa-
tion studies (Table 1 and Fig. 1).

Dimensional sampling and measurement
To overcome the limitations of categorical nosological systems, some 
have advocated for studying dimensional phenotypes that cut across 
traditional diagnostic categories, a view that closely aligns with the 
National Institute of Mental Health (NIMH) RDoC2 initiative. Psychomet-
rically, mental disorders show a dimensional rather than a taxonomic 
structure61 and dimensional measures of psychopathology exhibit 
greater reliability and validity than categorical diagnoses23. Indeed, 
the highly polygenic architecture of many psychopathology pheno-
types implies that they are dimensionally distributed quantitative 
traits62. Greater statistical power can be further achieved in biological 
studies through a dimensional enhancement strategy, involving the 
recruitment of participants with subthreshold and non-clinical levels 
of symptoms to leverage symptom variation across the full spectrum 
of severity63. The chances of sampling bias and clinical heterogeneity 
will be reduced, and effect size estimates will be less biased, with dimen-
sional (versus case–control study) designs27. Dimensional sampling 
strategies are potentially more economical than case–control sampling, 
as dimensional designs do not rely on thorough clinical pre-screening 
of participants prior to their inclusion in the study64. Dimensional 
sampling is also more likely to yield samples more representative of 
the population than case–control sampling, as dimensional sampling 
does not exclude individuals based on arbitrary clinical cut-offs and 
hierarchical exclusion rules43. However, to ensure sampling of the full 
spectrum of symptom or syndrome severity, participants likely to have 
elevated levels of the target psychopathology dimensions can be over-
sampled (Fig. 3).

Table 1 | Sources of imprecision in psychopathology 
phenotyping and proposed solutions

Problem Solution

Sampling bias Dimensional sampling and 
measurement

Minimal and inconsistent 
phenotyping

Deep phenotyping and use of 
standardized measures

Phenotypic complexity Use of homogeneous unidimensional 
scales, test for multidimensionality 
and model hierarchical relations 
between dimensional constructs

Poor phenotypic resolution Increase phenotypic resolution by 
adding items assessing the adaptive 
end of the continuum

Measurement non-invariance Test for and accommodate 
measurement non-invariance

The heterogeneity problem

 Person-centered heterogeneity Mixture modeling

 Variable-centered heterogeneity Broadband assessment of 
psychopathology and hierarchical 
modeling

Method bias Multi-method assessment
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Deep phenotyping and use of standardized measures
Existing large-scale databases—such as the UK Biobank65—have a large 
number of participants who completed an array of measures. How-
ever, a limitation of these databases is minimal phenotyping of specific 
psychopathology phenotypes32. To address problems of minimal and 
inconsistent phenotyping, we recommend comprehensive assessment 
using a deep phenotyping approach (comprehensive assessment of one 
or more phenotypes) with standardized psychopathology measures 
that can be widely adopted (for example, Box 3), and which are better 
suited for data pooling via established psychiatric research consortia 
(for example, ENIGMA and PGC)32. Broadband assessment of multiple 
dimensions of psychopathology should be undertaken due to the highly 
comorbid nature of mental health problems64. An advantage of deep 
phenotyping is that it enables the identification and accommodation 
of comorbidity, as well as person-centered and variable-centered het-
erogeneity. Deep phenotyping also facilitates greater comparability 
across studies and the potential harmonization of datasets. Examples 
of deep phenotyping can be found in existing cohorts30,31.

Use of homogeneous unidimensional scales and hierarchical 
modeling
Construct homogeneity (that is, the assumption or evidence that a con-
struct reflects variance in a single phenotype) and unidimensionality 
(that is, the covariance amongst a homogenous item set is captured by 
one factor or latent variable, as opposed to two or more factors in the 
case of multidimensionality) are important qualities of scales used to 
assess psychopathology that enable researchers to isolate the specific 
sources of variance associated with biological measures66. Relatedly, 
owing to the potential empirical overlap of symptom components or 
empirical syndromes at low levels of the psychopathology hierarchy, 
it is important that the measures chosen assess homogeneous com-
ponents with high discriminant validity to avoid redundancy43. We 
thus advocate for a ‘splitting’ approach in which psychopathological 
constructs are dissected into finer-grained, lower-order homogene-
ous constructs to isolate specific variance while taking account of the 
hierarchical organization of these phenotypes67. A previous study68 
provides an example of a splitting approach that identified significant 
associations between polygenic risk for schizophrenia and psychomet-
ric measures of schizotypy in a non-clinical sample that were otherwise 
obscured by the use of raw scores or a ‘lumping approach’. Unidimen-
sionality of a construct can be evaluated using factor analysis within 
a structural equation modeling framework (Box 4).

Psychiatric symptoms are intrinsically hierarchical. Even homoge-
neous scales typically contain sources of variance spanning multiple 

levels of the hierarchy43. Failure to account for this structure leads to 
measurement contamination, and reduced reliability and validity for 
investigating biological associations (compare with example 1 of the 
Supplementary Information). Phenotypic complexity, multidimen-
sionality, the heterogeneity problem, and the comorbidity problem can 
all be addressed via hierarchical modeling. There are two approaches 
to modeling the hierarchical structure of psychopathology: bottom 
up and top down. Bottom-up approaches leverage higher-order factor 
models and confirmatory factor analysis within an SEM framework  
(Box 4), with narrower psychiatric syndromes modeled at the first stage 
and broader spectra modeled at the second (for a tutorial, see ref. 69). 
Using a bifactor model, hierarchical sources of variance can be parti-
tioned into a common factor (for example, p-factor) and orthogonal 
specific factors (for example, internalizing, externalizing; see example 
1 of the Supplementary Information for a detailed illustration)44. An 
alternative bottom-up approach uses hierarchical clustering, where 
questionnaire items or subscales are organized into homogeneous 
clusters based on shared features70.

The top-down approach is the bass-ackwards method71. The 
bass-ackwards method is useful for explicating complex hierarchical 
structures top down and involves extracting an increasing number of 
orthogonal principal components to represent the major dimensions 
of a multi-level hierarchy. The first unrotated principal component 
captures covariance amongst items or subscales from psychopathol-
ogy questionnaires at the broadest level. In the second iteration of the 
method, two orthogonally rotated principal components are extracted; 
followed by three at the next iteration and so on. Component correla-
tions are calculated between adjacent levels to evaluate continuity 
versus differentiation of psychopathology components. Proceeding 
further down the hierarchy, the covariance structure becomes differ-
entiated into dimensions that are increasingly narrow conceptually 
and empirically, until distinct behavioral syndromes or symptom 
constellations are isolated. An example of the bass-ackwards method 
in the ABCD data is provided in ref. 72.

Increasing phenotypic resolution
To address the issue of low phenotypic resolution, items can be carefully 
selected within an iIRT framework (Box 5) so that they assay psycho-
pathological severity across the full length of the latent-trait contin-
uum, offering psychometric precision at all levels of the measured 
construct40. Alternatively, it is possible to select measures that have 
already been optimized within an IRT framework to increase measure-
ment precision across the entire latent-trait continuum (for exam-
ple, the computerized adaptive assessment of personality disorder; 

Measurement and study design

Data analysis

Dimensional sampling
and measurement

Use multi-method
assessment

Comprehensive
measurement of the
target phenotypes

Increase phenotypic
resolution 

Broadband assessment
of psychopathology

Use homogeneous and
unidimensional scales 

Use structural equation
modeling for analyses

Test for latent classes/
mixtures/subgroups

Test for and accommodate
measurement
non-invariance

Model hierarchical
relationships between

constructs
Model method factors

Conduct biology–
behavior association

analyses

Fig. 3 | Precision psychiatric phenotyping. Example workflow for a precision psychiatric phenotyping approach in the context of a biology–psychopathology 
association study.
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CAT-PD73). For unipolar traits, it is possible to bolster measurement pre-
cision with items from a related construct that represents the opposite 
(that is, adaptive) end of the continuum74. We demonstrate the utility of 
this approach in example 4 of the Supplementary Information, where 
we bolster the lower end of the CBCL attention problems latent trait 
continuum by pooling the items from this scale with items taken from 
the Early Adolescent Temperament Questionnaire – Revised (EATQ-R)17 
effortful control subscale, which measures the adaptive end of the 
attentional control/attentional problems continuum.

Address measurement non-invariance
Measurement invariance should be thoroughly evaluated across 
groups, including sex/gender, race/ethnicity and developmental stage. 
There are multiple resources for invariance testing, including analytic 
flow charts and checklists50. Differential item function (DIF) testing 
within an IRT framework provides a powerful approach to invariance 
testing, but requires larger sample sizes and involves more restrictive 
assumptions75. Where full invariance does not hold, partial invariance 
can be considered by freely estimating one or more model parameters 
in the comparison group76. Alternatively, researchers can utilize Bayes-
ian approximate invariance testing, which is useful when there are many 
small, trivial differences between group parameters of no substantive 

interest, but which in combination result in poor model fit76. Groups or 
subsamples with partial non-invariance of their model parameters can 
still be meaningfully compared in some circumstances76.

Measurement non-invariance can be accommodated in several 
ways. Groups or subsamples with fully non-invariant measurement 
parameters for psychiatric phenotypes should be analyzed separately. 
It is also possible to circumvent issues of measurement non-equiva-
lence within both factor analytic and IRT frameworks by removing items 
identified as having non-invariant factor loadings or intercepts, or 
slope and threshold parameters, to ensure the equivalence of the latent 
variable across groups. However, in these instances researchers should 
be cautious of changing the substantive interpretation of the construct 
by narrowing its scope and breadth (that is, the attenuation paradox).

Mixture modeling
In contrast to situations where subgroups are easily identified and dif-
ferentiated based on manifest, discrete characteristics such as sex and 
ethnicity, there are situations where subgroups embedded within the 
data are not directly observed, resulting in person-centered heteroge-
neity. Thus, prior to conducting biology–behavior association studies, 
it is important to verify that the psychiatric phenotypes can be treated 
as continuous dimensions in the sample. Mixture modeling provides 
a useful approach for investigating person-centered heterogeneity77. 
Mixture modeling is a particularly promising approach because it can 
identify latent classes or clinical subtypes, which often characterize 
psychopathology phenotypes77. Entropy provides a summary measure 
of the classification accuracy of participants based on the posterior 
probabilities of class membership within a mixture modeling analysis. 
It can range between 0 and 1.00, with higher entropy indicating better 
classification accuracy. When entropy is high (for example, ≥0.80) class 
membership can be used as a discrete categorical variable for subse-
quent analyses to compare results between classes. However, where 
entropy is low, classes must be compared using alternative analytic 
approaches that take into account the probabilistic nature of class 
membership. By identifying and analyzing subtypes, the confounding 
impact of sample heterogeneity on studies of the associations between 
biology and psychopathology can be reduced34. In example 5 of the 
Supplementary Information, we apply mixture modeling to the atten-
tion problems CBCL scale, using data from the ABCD 2-year follow-up. 
Results reveal evidence for two latent classes with different empirical 
distributions and item response profiles on the CBCL. These observa-
tions suggest that failure to account for the latent categorical structure 
of the attention problems scale could lead to erroneous results in biol-
ogy–psychopathology association studies.

Multimethod assessment
A fundamental tenet of psychometrics is that measurement of a psycho-
logical attribute represents a trait–method unit, combining a person’s 
true score with systematic measurement error related to the assessment 
method66. Thus, at least two different assessment methods are required 
to differentiate the true score for a trait measure from method effects78. 
The recommended approach to circumventing issues of method bias 
is to use multimethod assessment and then implement statistical rem-
edies to identify and exclude the method factors and decompose an 
observed score into true score, method variance (systematic error) 
and random measurement error60,78. The optimal statistical method 
for removing method variance is the trait method minus one [T(M-1)] 
model estimated within an SEM framework (Box 4)79.

In example 6 of the Supplementary Information, we apply the 
T(M-1) method to the new composite scale we constructed in example 
4, which combined CBCL attention problems scale items and the EATQ-
R effortful control subscale items of the ABCD data. The purpose of 
applying the T(M-1) model was to control for method variance associ-
ated with subjective report by the primary caregivers and in doing so 
increase signal-to-noise ratio. To do so, we incorporated neurocognitive 

Box 5

Item response theory
IRT is a sophisticated approach to psychometric scale construction, 
evaluation and refinement and has been increasingly 
recommended for, and applied, in psychopathology research99. IRT 
encapsulates a set of measurement models and statistical methods 
that can be used to empirically model item level data99. The 
two-parameter logistic (2PL) model for dichotomous item response 
data and its extension for polytomous item response data, the 
graded response (GR) model, are the most commonly used 
models45,100. Two main parameters of interest are generated through 
IRT analysis: (1) a slope (also ‘discrimination’) parameter (α); and (2) a 
threshold (also severity or location) parameter (β). Slope 
parameters are akin to factor loadings and indicate how well an item 
measures the latent trait. They are measured in a logistic metric, 
generally ranging between ±2.8, with higher values indicating that 
an item is more discriminating between different levels of a latent 
trait99. Threshold parameters indicate the location on the latent trait 
continuum where an item is most sensitive to different levels of the 
latent trait. They are measured in a standardized metric (that is, 
M = 0, s.d. = 1) generally ranging between ±3, with more extreme 
values indicating that an item is sensitive to lower and higher levels 
of symptom severity99. These item-level parameters enable the 
amount of measurement precision, or ‘information’, to be 
quantified. Item information is additive and can be combined to 
represent the total measurement precision of items across the 
latent-trait continuum47. Information (I) can then be transformed into 
a standard metric of internal consistency reliability [rxx = 1 − ( 1

I
)] 

(ref. 100). Items can thus be carefully selected to optimize 
measurement precision across the whole latent-trait continuum. 
Furthermore, items with high local dependence (that is, correlated 
residual variances) can be identified as redundant and removed. 
Despite the appeal of IRT for optimizing phenotypic precision in 
psychopathology research, it has not been utilized widely for 
identifying associations between psychometric constructs and 
biological measures.
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measures of the target attention problems construct; specifically, 
stop signal reaction time from the stop signal task and d-prime as an 
estimate of working memory from the n-back task, both of which are 
well-established endophenotypes of ADHD80,81. We were then able to 
specify the neurocognitive measures as the reference method, such 
that loadings from the CBCL and EATQ-R caregiver report items on the 
target attention problems factor captured only that variance shared 
with the neurocognitive measures. A methods factor captured the 
residual variance in subjective report by the primary caregivers that 
was unique to these measures79. We found that the attention problems 
factor was associated with polygenic risk for ADHD. By contrast, the 
methods factor that captured variance specific to caregiver-report 
measures of attention problems and attention control abilities was 
not significantly related to polygenic risk for ADHD (Supplementary 
Fig. 27). Thus, the T(M-1) model yielded a genetic association that was 
otherwise obscured by standard analyses.

Conclusions
It has been suggested that large, consortia-sized samples are neces-
sary to discover robust and reproducible biology–psychopathology 
associations. Larger sample sizes are not sufficient to resolve the issues 
introduced by imprecise or otherwise suboptimal psychiatric pheno-
types. As a field, we must first improve our measurement techniques. 
We recommended broadband, transdiagnostic assessment of hierarchi-
cally organized, unidimensional and homogeneous psychopathology 
dimensions across the full range of the severity spectrum. We encour-
age greater focus on deep phenotyping, measurement invariance, 
phenotypic resolution, and person-centered and variable-centered 
heterogeneity. A voluminous psychometrics literature—and the worked 
examples featured in this Review—make clear that this multi-faceted 
strategy will increase validity, reliability, effect sizes, statistical power 
and, ultimately, replicability.
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Example 1 – Phenotypic complexity 

To demonstrate the problem of phenotypic complexity, we modeled the CBCL data 

from the two-year follow-up wave of the ABCD study cohort using a bifactor model, which 

enables variance to be partitioned into common and scale-specific components1. To evaluate 

model-data consistency we report the chi-square (χ2) test statistic with associated model 

degrees of freedom and probability value (p); p > .05 indicates that the null hypothesis of 

exact fit of the model to the data cannot be rejected, but this statistic is overly sensitive to 

minor model misspecification in large samples, such as the current one2. Thus, we also report 

the root mean square error of approximation (RMSEA), standardized root mean squared 

residual (SRMR), and comparative fit index (CFI), where lower values of the RMSEA and 

SRMR, and higher values of the CFI, indicate a better-fitting model2. As a potential 

substitute for the χ² statistic, the matrix of correlation residuals informs on local model fit, 

where residuals below .10 indicate that the observed bivariate relationships between the 

variables are being closely reproduced by the model².  The model is displayed in 

Supplementary Figure 1. The model failed the exact fit test, (χ²(16) = 587.893, p < .001, 

RMSEA = .078, [95%CI = .073, .084], CFI = .972, SRMR = .027). However, it passed the 

local fit test in that all the correlation residuals were below .10, indicating that model 

misspecification error was minor and ignorable. It was therefore concluded that the model 

provided an acceptable fit to the data. 

A shown in Supplementary Figure 2, residual variance (including measurement error) 

unique to each of the scales (but some possibly shared with one or more of the other 

subscales in the form of error covariances), after removal of the general and group factor 

variances, ranged from as low as 24.6% for the Anxious/Depressed subscale to 71.6% for the 

Somatic Complaints subscale, but averaged just 43.3% across the eight subscales.
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𝑟𝑡𝑥,𝑡𝑦 =
𝑟𝑜𝑥, 𝑜𝑦

√𝑟𝑦𝑦𝑟𝑥𝑥 ,
(1) 

Reliable variance unique to the Internalizing and Externalizing composite scales after 

removal of variance attributable to the general factor and subscales was just 3.1 and 2.3% 

respectively, rendering them unusable as standalone measures. Less extreme reductions in 

reliable variance would still attenuate relationships between these measures and criterion 

variables (e.g., genetic markers and imaging-derived phenotypes), thereby obscuring 

psychopathology-biological associations (assuming these measures are valid indices of  

psychopathology and identifiable and meaningful underlying biological substrates, 

respectively).

A recent landmark study by Marek et al. (2022)4 reported a median effect size of r = 

0.06 across all possible brain-wide associations between various MRI-derived measures of 

brain structure and function, and different metrics of cognitive ability as measured by the 

National Institute of Health (NIH) Toolbox5, and personality and psychopathology12, as 

measured by the CBCL6; short form7,8 of the Urgency, (Lack of) Premeditation, (Lack of) 

Perseverance, Sensation Seeking, Positive Urgency (sUPPS-P) Behavioral Impulsivity 

scale9-11;  the child version12 of the Behavioral Inhibition / Behavioral Activation (BIS/BAS) 

scales13; and the Pediatric Psychosis Questionnaire − Brief Version14,15. However, using 

equation 1 from the main text, we can see that unreliability of measurement due to 

phenotypic complexity of one or more of these instruments may have resulted in attenuation 

bias in these observed brain-behavior associations. Conversely, we can correct for 

attenuation of the correlation coefficient using the formula, 
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which indicates that, even if we assume zero error in the imaging-derived phenotypes, the 

true correlations could be considerably higher than those observed and reported. 

Considering that res = .10, .20, and .30 correspond with small, medium, and large effects 

sizes respectively16, the true effect sizes could be meaningfully higher than those observed 

and reported when phenotypic complexity has not been taken into account. These 

disattenuated correlations also have major implications for statistical power and sample size 

planning17. We further note that while Marek et al. (2022)4 address the notion of attenuation 

bias and disattenuation correction by arguing that the reliability of the behavioral 

phenotypes, including the CBCL scales, is at - or near -ceiling, these calculations rely on 

taking the alpha reliability estimates of the CBCL scales on face value (acceptable to high). 

Furthermore, as we demonstrate below in example 2, the reliability of a given 

psychopathology measure varies along the latent trait continuum and usually drops below 

acceptable levels below the mean. Attenuation of biology-behavior associations can be 

substantial when high phenotypic complexity (and low phenotypic resolution) is not 

considered.  
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Supplementary Figure 1. Bifactor model of the CBCL data obtained from the two-year Supplementary Figure 1. Bifactor model of the CBCL data obtained from the two-year Supplementary Figure 1. Bifactor model of the CBCL data obtained from the two-year Supplementary Figure 1. Bifactor model of the CBCL data obtained from the two-year 

follow-up data collection wave follow-up data collection wave follow-up data collection wave follow-up data collection wave of the of the of the of the ABCD study cohort.ABCD study cohort.ABCD study cohort.ABCD study cohort.    

Note.Note.Note.Note. Model fit statistics χ2 (16) = 587.893, p < .001, RMSEA = .078, [95%CIχ2 (16) = 587.893, p < .001, RMSEA = .078, [95%CIχ2 (16) = 587.893, p < .001, RMSEA = .078, [95%CIχ2 (16) = 587.893, p < .001, RMSEA = .078, [95%CI    

= .073, .084]. All correlation residuals were below .10.     

Model figure is displayed using symbols from the McArdle-McDonald reticular 

action model18. Observed (also measured or manifest) variables are represented as rectangles. 

Factors (latent variables or constructs) are represented as large ellipses. Error variances for 

observed variables, are symbolized with small double-headed arrows pointing to the 

rectangles. Double-headed, curved arrows pointing to factors are the latent variable variances. 

Straight, single-headed arrows from large ellipses to observed variables reflect factor 

loadings. 
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Supplementary Figure 2. Proportion of variance in the CBCL Scales in 5,820 participants 

from the two-year follow-up wave of the ABCD study cohort that is unique to the eight 

syndrome scales versus what is general factor variance (i.e., overarching p-factor), and what 

is specific to each of the two group factors (internalizing or externalizing). 

Image taken from Tiego and Fornito (2022)19. Reprinted with permission. 
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Example 2 - Low phenotypic resolution 

To illustrate the problem of low phenotypic resolution in psychiatric phenotypes, we 

first calculated the internal consistency reliability using Cronbach’s alpha (α) for each of the 

eight syndrome scales and three composite scales of the CBCL. We then plotted the total 

information functions (TIFs) within an item response theory (IRT) framework for each of the 

eight CBCL empirical syndrome scales and the three CBCL composite scales (i.e., 

Internalizing, Externalizing, and Total Problems). A TIF represents the additive measurement 

precision (i.e., information) contributed by items on a questionnaire scale/subscale or other 

performance measure20. IRT is distinct from classical test theory in that it does not assume 

reliability is uniform across the latent-trait continuum. Rather than standard measures of 

reliability from classical test theory (e.g., Cronbach’s α), a TIF plots the total information 

(i.e., measurement precision) contributed by the retained questionnaire items, which varies 

across different points of the latent trait continuum.  We can then calculate the corresponding 

reliability in the population (where zero is the population mean and one the population 

standard deviation) 21,22 associated with each point of the latent trait continuum for each 

phenotype using the formula: 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ )23.

Although the classic metric of internal consistency reliability indexed using 

Cronbach’s α demonstrated acceptable levels of reliability for all eleven scales (α = .68 - .95), 

IRT analysis revealed unacceptably low reliability even for basic research purposes (𝑟𝑥𝑥  < 

.6)24 at or below one standard deviation below the mean for all scales accept the Total 

Problems scale (Table S1). This low reliability is non-trivial when considering that scores on 

the CBCL are strongly positively skewed25,26 with most children scoring at the lower end of 

the scale (Supplementary Figures 3 – 13). We therefore calculated the proportion of the 

sample with unreliable scores (rxx < 0.60) for each of the CBCL scales (Supplementary Table 

2). On average, 37.2% of the sample would have unreliable scores. More than half of the 
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sample had unreliable scores for 3 of the 11 scales. In short, a substantial proportion of 

ABCD participants have scores with unacceptably low reliability, which will necessarily 

attenuate observed biology-psychopathology associations. This analysis demonstrates the 

problems posed by taking scale reliability estimates at face value.  



Running title: Precision phenotyping for psychopathology_Supplementary information 13 

Supplementary Table 1 

Reliability of the Child Behavior Checklist Scales Across the Latent Trait Continuum Estimated Using Unidimensional Item Response Theory Analysis 

Reliability rxx (I) Across Latent Trait Continuum (θ) 

CBCL Scale Number of 
Items 

α -3.0 SD -2.5 SD -2.0 SD -1.5 SD -1.0 SD -0.5 SD M +0.5 SD +1.0 SD +1.5 SD +2.0 SD +2.5 SD +3.0 SD 

Anxious/Depressed 13 .813 .030 
(1.0304) 

.061 
(1.0654) 

.125 
(1.1431) 

.241 
(1.3178) 

.417 
(1.7141) 

.616 
(2.6040) 

.775 
(4.4470) 

.863 
(7.3177) 

.900 
(10.0273) 

.911 
(11.2038) 

.922 
(12.7643) 

.922 
(12.7768) 

.909 
(11.0446) 

Withdrawn/Depressed 8 .765 .010 
(1.0097) 

.021 
(1.0218) 

.048 
(1.0500) 

.104 
(1.1162) 

.214 
(1.2721) 

.389 
(1.6359) 

.592 
(2.4489) 

.755 
(4.0826) 

.853 
(6.7991) 

.895 
(9.5497) 

.889 
(8.9773) 

.887 
(8.8811) 

.897 
(9.7193) 

Somatic Complaints 11 .677 .031 
(1.0321) 

.053 
(1.0561) 

.091 
(1.0997) 

.153 
(1.1805) 

.251 
(1.3353) 

.394 
(1.6497) 

.575 
(2.3517) 

.749 
(3.9830) 

.853 
(6.8158) 

.872 
(7.8103) 

.863 
(7.3099) 

.890 
(9.1264) 

.884 
(8.6198) 

Social Problems 11 .746 .020 
(1.0199) 

.036 
(1.0371) 

.066 
(1.0703) 

.775 
(1.1356) 

.211 
(1.2675) 

.354 
(1.5470) 

.541 
(2.1805) 

.732 
(3.7244) 

.862 
(7.2407) 

.909 
(10.9852) 

.901 
(10.0993) 

.906 
(10.6863) 

.911 
11.1783 

Thought Problems 15 .677 .027 
(1.0275) 

.045 
(1.0475) 

.079 
(1.0862) 

.140 
(1.1634) 

.243 
(1.3207) 

.391 
(1.6412) 

.558 
(2.2647) 

.700 
(3.3360) 

.798 
(4.9490) 

.867 
(7.4909) 

.904 
(10.4228) 

.909 
11.0323 

.916 
(11.9506) 

Attention Problems 10 .852 .018 
(1.0182) 

.040 
(1.0419) 

.091 
(1.1004) 

.201 
(1.2522) 

.405 
(1.6793) 

.683 
(3.1581) 

.897 
(9.7237) 

.938 
(16.1762) 

.913 
(11.4510) 

.947 
(18.8380) 

.917 
(12.0549) 

.875 
(8.0111) 

.839 
(6.2087) 

Rule-Breaking 
Behavior 

17 .715 .010 
(1.0103) 

.018 
(1.0179) 

.032 
(1.0333) 

.064 
(1.0688) 

.141 
(1.1635) 

.311 
(1.4516) 

.579 
(2.3757) 

.793 
(4.8371) 

.868 
(7.5997) 

.878 
(8.1925) 

.913 
(11.5183) 

.940 
(16.5493) 

.944 
(17.9945) 

Aggressive Behavior 18 .876 .012 
(1.0117) 

.243 
(1.321) 

.084 
(1.0920) 

.214 
(1.2727) 

.451 
(1.8199) 

.298 
(3.3513) 

.848 
(6.5684) 

.903 
(10.3334) 

.926 
(13.4458) 

.944 
(17.7986) 

.955 
(22.3005) 

.954 
(21.7362) 

.947 
(18.8987) 

Internalizing Problems 32 .874 .096 
(1.1062) 

.162 
(1.1938) 

.268 
(1.3657) 

.416 
(1.7123) 

.586 
(2.4164) 

.737 
(3.8028) 

.841 
(6.3015) 

.902 
(10.2012) 

.933 
(14.9264) 

.946 
(18.4754) 

.951 
(20.2725) 

.952 
(20.9856) 

.951 
(20.3838) 

Externalizing 
Problems 

35 .897 .025 
(1.0254) 

.055 
(1.0586) 

.126 
(1.1443) 

.274 
(1.3770) 

.506 
(2.0256) 

.735 
(3.7776) 

.871 
(7.7467) 

.925 
(13.388)5 

.945 
(18.3015) 

.958 
(23.9771) 

.968 
(30.9540) 

.970 
(33.8423) 

.970 
(33.4850) 

Total Problems1 103 .949 .192 
(1.2382) 

.314 
(1.4585) 

 .478 
(1.9144) 

.652 
(2.8772) 

 .800 
(4.9036) 

 .888 
(8.9608) 

 .938 
(16.1290) 

 .962 
(26.6085) 

 .975 
(39.3269) 

.981  
(52.3180) 

 .984 
(62.3948) 

.985  
(66.4372) 

.985  
(67.7770) 

N = 5,820. CBCL = child behavior checklist. α = Cronbach’s alpha internal consistency reliability. rxx = internal consistency reliability. I = Information (rxx = 1 – 1/I). Red color font type indicates unacceptably low 

reliability for basic research (rxx < .60). 1n = 5,81
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A) 

B)

Supplementary Figure 3. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Anxious/Depressed syndrome scale.  B) Histogram of sum scale scores on the Anxious/Depressed syndrome 

scale.  

Note. N = 5,820. 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ).  Standard error of the estimate (SEE) = 1/√𝐼.
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A) 

 B)

Supplementary Figure 4. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Withdrawn/Depressed syndrome scale. Taken from Tiego and Fornito (2022)19. Reprinted with permission. 

B) Histogram of sum scale scores on the Withdrawn/Depressed syndrome scale.

Note. N = 5,820. 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ).  Standard error of the estimate (SEE) = 1/√𝐼.
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A)          

     

B) 

 

Supplementary Figure 5. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Somatic Complaints syndrome scale.  B) Histogram of sum scale scores on the Somatic Complaints syndrome 

scale.  

Note. N = 5,820. 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ).  Standard error of the estimate (SEE) = 1/√𝐼. 
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A)             

   

B) 

 

Supplementary Figure 6. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Social Problems syndrome scale.  B) Histogram of sum scale scores on the Social Problems syndrome scale. 

Note. N = 5,820. 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ).  Standard error of the estimate (SEE) = 1/√𝐼. 
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A)       

    

B) 

 

Supplementary Figure 7. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Thought Problems syndrome scale.  B) Histogram of sum scale scores on the Thought Problems syndrome 

scale. 

Note. N = 5,820. 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ). Standard error of the estimate (SEE) = 1/√𝐼. 
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A)             

   

B) 

 

Supplementary Figure 8. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Attention Problems syndrome scale.  B) Histogram of sum scale scores on the Attention Problems syndrome 

scale.  

Note. N = 5,820. 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ).  Standard error of the estimate (SEE) = 1/√𝐼. 
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A)       

   

B) 

 
Supplementary Figure 9. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Rule-Breaking Behavior syndrome scale.  B) Histogram of sum scale scores on the Rule-Breaking Behavior 

syndrome scale.  

Note. N = 5,820. 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ).  Standard error of the estimate (SEE) = 1/√𝐼. 
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A)             

 

B) 

 

Supplementary Figure 10. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Aggressive Behavior syndrome scale. B)  Histogram of sum scale scores on the Aggressive Behavior syndrome 

scale. 

Note. N = 5,819. 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ).  Standard error of the estimate (SEE) = 1/√𝐼. 
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A)             

   

B) 

 

Supplementary Figure 11. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Internalizing Problems scale.  B) Histogram of sum scale scores on the Internalizing Problems scale.  

Note. N = 5,820.   𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ).  Standard error of the estimate (SEE) = 1/√𝐼. 
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A)             

   

B) 

 

Supplementary Figure 12. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Externalizing Problems scale.  B) Histogram of sum scale scores on the Externalizing Problems scale.  

Note. N = 5,819. 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ).  Standard error of the estimate (SEE) = 1/√𝐼. 
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A)             

    

B) 

 

Supplementary Figure 13. A) Total information function / curve (TIF/TIC) for the child behavior checklist 

Total Problems scale.  B) Histogram of sum scale scores on the Total Problems scale.  

Note. N = 5,820. 𝑟𝑥𝑥 =  1 −  (1
𝐼⁄ ).  Standard error of the estimate (SEE) = 1/√𝐼. 
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Supplementary Table 2 

Proportion of the Sample from the Two-Year Follow-Up Wave of Data Collection from the ABCD Study Cohort 

that Did Not Meet Minimal Acceptable Standards of Measurement Reliability on Each of the Eleven Child 

Behavior Checklist Scales 

 

Note. N = 5,820. CBCL = Child behavior checklist.  θ = latent trait continuum in standardized metric (i.e., M = 

0, SD = 1). I = Information. n = size of subsample. rxx = internal consistency reliability.  

 

 

 

 

 

 

 

 

 

 

CBCL Scale θ I < 2.5 Raw Score at I < 2.5 n rxx < .60 %N rxx < .60 

Anxious/Depressed -0.600 0.5329 1,985 34.1 

Withdrawn/Depressed 0.000 0.5207 3,103  53.3 

Somatic Complaints 0.000 0.8081 2,539  43.6 

Social Problems 0.100 0.7009 2,983 51.3 

Thought Problems 0.100 0.9287 2,563 44.0 

Attention Problems -0.700 0.3498 2,074 35.6 

Rule-Breaking Behavior 0.000 0.3885  3,336  57.3 

Aggressive Behavior -0.800 0.2757 2,115 36.3 

Internalizing Problems -1.000 0.9160 1,071 18.4 

Externalizing Problems -0.900 0.3649 1,788 30.7 

Total Problems -1.700 0.9401 453 7.78 
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Example 3 - Measurement non-invariance. 

Measurement invariance for questionnaires can also be evaluated within an IRT 

framework (Box 5 main text), where it is called differential item functioning (DIF)27,28. DIF 

refers to the property of a measurement instrument in which the item parameters estimated 

within an IRT framework differ as a function of group membership, such that there is bias in 

interpreting and comparing the raw scores between groups. When DIF is of sufficient 

magnitude across many items it can result in differential test functioning (DTF), by which 

scores cannot be meaningfully compared between groups because they correspond to 

different levels of the latent trait being measured27-29. This has serious implications for 

biology-psychopathology association studies, because psychometric and substantive group 

differences in observed scores may obscure meaningful associations with psychiatric 

biomarkers. It is worth mentioning that DIF can also be associated with latent classes or 

mixtures (see example 5), which represent unobserved groups that vary in their slope and 

threshold parameters (Box 5 main text). These differences can be detected using IRT mixture 

modeling30-32. 

DIF assessment is an essential, but often overlooked, part of the validation process for 

psychiatric phenotypes33. DIF is a more powerful approach for detecting non-invariance than 

traditional factor analysis approaches, but requires larger sample sizes and more restrictive 

assumptions34. There are multiple approaches to DIF testing, but the preferred method when 

equivalence between any items has not yet been established is to use an iterative two-step 

procedure35. Here, all items are anchored to a common metric (i.e., all items scaled to the 

same latent trait distribution) and their slope and threshold parameters freely estimated one at 

a time. The difference in model fit is tested for statistical significance using the Wald χ2 test35. 

Each item is tested for statistically significant group differences in slope and threshold 

parameters, as well as overall DIF (slope and threshold parameters) using the χ2 test statistic 
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with corresponding degrees of freedom (df).  Differences in the threshold (severity/location) 

parameters indicate that item response categories are differentially sensitive to different 

levels of the latent trait between groups29.  Statistically significant differences in slope 

parameters indicate that questionnaire items provide different degrees of information and 

precision of measurement across groups29.   

By way of example, we tested for DIF in the Total Problems scale of the CBCL for 

male and female ABCD participants using the two-year follow-up data. We focused on the 

Total Problems scale because it has the highest reliability of all the CBCL scales as indexed 

by Cronbach’s α and information values across the latent trait continuum (Supplementary 

Table 1). We evaluated item-level performance prior to overall model fit23,36. The 

monotonicity assumption was assessed by inspecting the option response functions and 

ensuring that the probability of endorsement of each successive response category on CBCL 

items increased monotonically as a function of increasing severity on the CBCL total 

problems latent trait continuum23. We removed three items (72, 105, 106) with substantially 

elevated standard errors for their threshold parameters in males and females, suggesting poor 

fit of the model. The fit of the graded response (GR) model to each item was assessed with a 

generalization of the S-χ2 item-fit statistic37 at a lower significance threshold to account for 

the very large sample [p < .001]. No items demonstrated poor fit to the GR model based on 

this probability threshold. Many items demonstrated local dependence (LD) based on 

exceeding the recommended threshold for the standardized LD χ2 statistics [i.e.,  > 10]38. 

However, there was good reason to believe that these inflated LD statistics and apparent local 

dependencies between items were attributable to the large number of zero-frequency cells in 

the bivariate contingency tables39 for the CBCL data, which is common for clinical scales 

with low endorsement rates resulting in sparseness of the observed data23.  For this reason, 

we retained all remaining items regardless of whether they had elevated LD (χ2 > 10). 
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We determined substantial DIF between the sexes, such that there was evidence of 

DTF as can be seen in the test characteristic curves displayed in Supplementary Figure 14. 

Test characteristic curves plot the expected raw score for a group (y axis) as a function of 

their values on the underlying latent trait continuum (x axis)22,29,40. As can be seen in 

Supplementary Figure 14, the test characteristic curves were not coincident at any point along 

the latent trait continuum, indicating DTF. In other words, raw scores on the CBCL Total 

Problems scale cannot be directly compared between male and female children, because they 

correspond to different levels of the underlying Total Problems latent trait. For example, a 

raw score of 10 in males (equivalent to the mean of the latent trait) does not index the same 

level of severity in the underlying latent trait construct as it does in females (roughly 

equivalent to two standard deviations below the mean of the latent trait). These differences 

will confound any analysis that pools scores for males and females. The differences observed 

here are substantial and would confound any attempts to correlate this measure with 

biological variables that are pooled for male and female children. 
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Supplementary Table 3 

Levels of Measurement Invariance Typically Evaluated within a Factor Analytic Framework for Continuous 
Indicators
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Supplementary Figure 14. Test characteristic curves showing the relationship of expected 

raw score (y axis) as a function of a participants’ standing on the CBCL Total Problems latent 

trait continuum (x axis) for males (n = 3,025) and females (n = 2,795).   

Image taken from Tiego and Fornito (2022)19. Reprinted with permission. 
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Example 4 – Increasing phenotypic resolution 

Although attention deficit hyperactivity (ADHD)-related problems are dimensionally 

distributed in the developmental population41, the Attention Problems scale, along with many 

other CBCL scales, are strongly positive skewed6,25. This is due to the fact that the CBCL 

was developed for maximal criterion-validity in differentiating referred from non-referred 

youth (i.e., using empirical criterion-keying)25. Thus, subscale items index symptoms that are 

only relevant for a small proportion of children with clinically-significant attention problems. 

As a result, there will be high precision of measurement at the upper end of the Attention 

Problems latent trait continuum where there is adequate item coverage, but very poor 

precision at the adaptive end of the continuum where attentional functioning is normal or 

even better than normal (Supplementary Table 1 & Supplementary Figure 8)42.  

Along with the CBCL, parents/guardians of child study participants in the ABCD 

study also completed the Early Adolescent Temperament Questionnaire – Revised (EATQ-

R).43 The EATQ-R measures the three higher-order dimensions of temperament: negative 

affectivity, positive affectivity, and effortful control (i.e., constraint). Effortful control is the 

self-regulatory domain of temperament (i.e., the developmental precursor of 

conscientiousness) and constitutes a protective factor against developmental 

psychopathology, especially disinhibited externalizing problems such as ADHD 44-47. Thus, it 

stands to reason that high effortful control (i.e., high attentional control) represents the 

adaptive end of the attention problems continuum. We reran the latent trait model with IRT 

on the CBCL Attention Problems syndrome scale items incorporating the Effortful Control 

subscale items of the EATQ-R. The total information function is displayed in Supplementary 

Figure 15 and shows that measurement precision was markedly increased, with marginal 

reliability at rxx = .94 and reliability not dropping below rxx = .75 even at three standard 

deviations below the mean. However, inclusion of additional items must meet the 
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assumptions of unidimensional IRT, including unidimensionality and fit of item data to the 

(two parameter logistic or graded response) IRT model.23 

Supplementary Figure 15. Total information curve for the Attention Problems syndrome 

scale incorporating Effortful Control items from Early Temperament Questionnaire – Revised 

in 5,823 participants from the ABCD study. Marginal reliability estimate is rxx = 0.94 and 

reliability does not decrease below rxx = 0.75 even at -3SD.  
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Example 5 – Investigating sample heterogeneity with mixture modeling 

One area of psychiatric research in which biological and etiological heterogeneity has 

been increasingly recognized and accommodated is in the study of attention deficit 

hyperactivity disorder (ADHD)48-51. Attempting to explicitly account for heterogenous 

subtypes has led to the discovery of unique neuroimaging biomarkers52,53. In line with these 

findings and by way of example, we conducted a factor mixture modeling (FMM) analysis of 

the attention problems syndrome scale of the CBCL in the two-year follow-up wave of data 

of the ABCD study cohort. FMM is a type of latent variable analysis that combines latent 

class analysis (LCA) with the common factor modeling (CFM) approach54-56, and can be used 

for identifying discrete, or even probabilistic, classes (also “mixtures” or clinical 

subtypes/subgroups) that are latent (i.e., not directly observed) and embedded within 

multivariate dimensional data.  FMM is particularly useful for analyzing zero-inflated data, 

which is characteristic of clinical phenomena measured in non-clinical samples57. Zero-

inflated distributions can compromise correlational studies by violating distributional 

assumptions and attenuating linear relationships57,58. In these cases, FMM identifies 

individuals with little-to-no symptoms (i.e., a zero-inflated class) and distinguishes them from 

the rest of the distribution, resulting in differentiation into distinct sub-groups.  

We first confirmed that the attention problems construct was unidimensional (i.e., 

absence of variable-centred heterogeneity) and identified the best-fitting model in the ABCD 

sample using Bayesian structural equation modelling (SEM). We conducted a thorough 

sensitivity analysis by varying the priors for the factor loadings and residual covariances 

(Supplementary Figure 16 & Supplementary Table 4)59,60. We then conduced LCA to 

determine the upper bound on the number of potential classes that could be embedded within 

the data54. We determined that five classes based on item response patterns could be 

discerned as the best fitting categorical latent class model (see Supplementary Table 6) and 
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the upper bound for the number of FMM subtypes that would best account for the data (i.e., 

because FMM takes into account the factor structure and dimensionality of the data, as well 

as the categorical structure of person-centred subtypes, the number of classes best accounting 

for the data is less than that determined by LCA).   

We then began testing FMMs, beginning with the simplest, a one-factor one-class 

model54, before moving to one-factor two-class models using the most restrictive and 

parsimonious FMM  (i.e., FMM-1, different latent means only) before progressively relaxing 

equality constraints on the factor variance-covariance matrix (i.e., FMM-2); the item 

thresholds (i.e., FMM-3), and the factor loadings (i.e., FMM-4), as well as specifying zero-

inflated FMM models for the > two-class models, to determine the best fitting model as 

indicated by the log likelihoods (lower is better), entropy (ranges between 0.000 – 1.000, with 

higher values indicating better class separation), and the Bayesian information criterion (BIC; 

lower values denoting the preferred model)54. We found that a two-class, one-factor model 

FMM-3 provided the best fit to the data as revealed by the BIC and better class separation 

than the three-class one-factor zero-inflated FMM-3, which was little better than chance class 

assignment (see Supplementary Table 7). Although class separation was poor for the two-

class, one-factor FMM-3 model as shown by the low entropy, these two classes demonstrated 

distinct item response profiles (Supplementary Figures 17 – 26) with the smaller class 2 (n = 

853, 14.66%) endorsing more severe symptoms on seven of the ten items (1 “acts young”; 4 

“fails to finish”; 8 “concentrate”; 10 “sit still”; 41 “impulsive”; 61 “poor school”; 78 

“inattentive”) than the bigger class 1 (n = 4,967, 85.34%). Thus, whilst the latent variable 

variables have a similar interpretation across classes due to the same pattern of factor 

loadings, they have different variances, and neither latent means nor raw scores can be 

directly and meaningfully compared due to class varying thresholds (i.e., systematic 

differences in item response category endorsement unrelated to the latent variable)54. Failure 
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to check for and identify these mixtures may confound subsequent biology-psychopathology 

associations studies. As class separation was poor based on the entropy (E = .614), covariates 

(e.g. biological variables) would need to be compared across classes by including them as 

auxiliary variables and using the DCAT or BCH procedures as implemented in Mplus61 for 

categorial and continuous variables, respectively62,63. This method avoids biased estimates in 

class comparisons, whilst preserving uncertainty in class membership without causing shifts 

in latent classes64. 
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Supplementary Table 4 

Summary of Fit Statistics for Competing Bayesian Confirmatory Factor Analysis Models for the ASRS-5 in the 
Adult ADHD Cohort 

Model* 
95%CI Δχ2 

PPP 
Prior  
PPP LL UL 

1 One-factor model factor loading priors N(0.90,.100), residual covariances priors IW(5,10) -30.183 32.444 .483 .990 

2 One-factor model factor loading priors N(0.90,.050), residual covariances priors IW(5,10) -30.104 32.330 .478 .989 

3 One-factor model factor loading priors N(0.80,.100), residual covariances priors IW(5,10) -29.989 32.313 .477 .989 

4 One-factor model factor loading priors N(0.80,.050), residual covariances priors IW(5,10) -29.893 32.549 .484 .986 

5 One-factor model factor loading priors N(0.70,.100), residual covariances priors IW(5,10) -30.070 32.948 .482 .990 

6 One-factor model factor loading priors N(0.70,.050), residual covariances priors IW(5,10) -29.712 32.955 .474 .988 

7 One-factor model factor loading priors N(0.60,.100), residual covariances priors IW(5,10) -29.774 32.790 .477 .994 

8 One-factor model factor loading priors N(0.60,.050), residual covariances priors IW(5,10) -29.912 32.102 .482 .989 

9 One-factor model factor loading priors N(0.50,.100), residual covariances priors IW(5,10) -28.719 32.727 .473 .994 

10 One-factor model factor loading priors N(0.50,.050), residual covariances priors IW(5,10) -29.422 32.366 .482 .991 

11 One-factor model factor loading priors N(0.90,.100), residual covariances priors IW(3,10) -30.927 31.909 .483 .991 

12 One-factor model factor loading priors N(0.90,.050), residual covariances priors IW(3,10) -30.085 32.495 .482 .988 

13 One-factor model factor loading priors N(0.80,.100), residual covariances priors IW(3,10) -29.545 32.141 .487 .988 

14 One-factor model factor loading priors N(0.80,.050), residual covariances priors IW(3,10) -30.203 31.916 .484 .986 

15 One-factor model factor loading priors N(0.70,.100), residual covariances priors IW(3,10) -30.080 33.170 .489 .990 

16 One-factor model factor loading priors N(0.70,.050), residual covariances priors IW(3,10) -30.008 32.398 .479 .989 

17 One-factor model factor loading priors N(0.60,.100), residual covariances priors IW(3,10) -30.238 33.001 .474 .994 

18 One-factor model factor loading priors N(0.60,.050), residual covariances priors IW(3,10) -29.078 32.726 .472 .989 

19 One-factor model factor loading priors N(0.90,.100), residual covariances priors IW(1,10) -30.516 32.576 .483 .990 

20 One-factor model factor loading priors N(0.90,.050), residual covariances priors IW(1,10) -30.583 32.058 .481 .988 

21 One-factor model factor loading priors N(0.80,.100), residual covariances priors IW(1,10) -30.639 32.554 .484 .988 

22 One-factor model factor loading priors N(0.80,.050), residual covariances priors IW(1,10) - 30.344 32.701 .479 .986 

23 One-factor model factor loading priors N(0.70,.100), residual covariances priors IW(1,10) -30.133 32.877 .482 .991 

24 One-factor model factor loading priors N(0.70,.050), residual covariances priors IW(1,10) -29.524 32.921 .472 .987 

25 One-factor model factor loading priors N(0.60,.100), residual covariances priors IW(1,10) -29.819 32.227 .479 .994 

26 One-factor model factor loading priors N(0.60,.050), residual covariances priors IW(1,10) -29.154 33.052 .471 .989

Note. number of free parameters = 75; Δχ2 = 95% confidence interval for the difference between the observed 

and replicated chi-square values. PPP = posterior predictive probability value. Prior PPP = prior posterior 

predictive probability value. *All models used default normal priors for the item thresholds ~N(0.00,5.00). Base 

model with no priors for the factor loadings or error covariances failed to converge. Bold typeface denotes best 

fitting model. (N = 5,820). 
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Supplementary Figure 16. One-factor model of CBCL attention problems empirical syndrome scale in the 

two-year follow-up wave of data collection of the ABCD study (N = 5,820). 

Note. Model fit statistics were q = 75; 95%CI Δχ2 = -30.080, 33.170; PPP = 0.489; Prior PPP = 0.990. Freely 

estimated residual covariances omitted for clarity (see Table S5). 



Running title: Precision phenotyping for psychopathology_Supplementary information 38 

Supplementary Table 5 

Standardized Residual Covariances Between CBCL Attention Problems Items in the Best-Fitting Bayesian One-Factor Model 

Note.  95% credibility intervals in brackets. *** one-tailed p < .001; ** one-tailed p < .01; *one-tailed p < .025.

Variables 1. 2. 3. 4. 5. 6. 7. 8. 9. 

1. CBCL 1 

2. CBCL 4 0.209** 
(0.04, 0.375) 

3. CBCL 8 0.223 
(-0.022, 0.495) 

0.388*** 
(0.156, 0.596) 

4. CBCL 10 0.200* 
(0.012, 0.367) 

0.142 
(-0.100, 0.331) 

0.470*** 

(0.244, 0.635) 

5. CBCL 13 0.219 
(-0.007, 0.374) 

0.217 
(-0.077, 0.474) 

0.286 
(-0.231, 0.631) 

0.101 
(-0.172, 0.357) 

6. CBCL 17 0.158 
(-0.002, 0.301) 

0.276** 
(0.052, 0.489) 

0.261 
(-0.099, 0.575) 

0.088 
(-0.168, 0.312) 

0.458*** 

(0.253, 0.600) 

7. CBCL 41 0.263** 
(0.094, 0.396) 

0.277** 
(0.095, 0.419) 

0.310*** 

(0.126, 0.491) 
0.416*** 

(0.243, 0.534) 
0.138 

(-0.063, 0.346) 
0.165 

(-0.044, 0.346) 

8. CBCL 61 0.170* 
(0.006, 0.310) 

0.388*** 
(0.186, 0.521) 

0.361* 

(0.022, 0.539) 
0.095 

(-0.103, 0.248) 
0.211 

(-0.074, 0.415) 
0.114 

(-0.063, 0.318) 
0.225** 

(0.070, 0.352) 

9. CBCL 78 0.196 
(-0.031, 0.442) 

0.370*** 
(0.171, 0.575) 

0.648*** 

(0.504, 0.741) 
0.369** 

(0.107, 0.529) 
0.263 

(-0.148, 0.596) 
0.347** 

(0.029, 0.627) 
0.421*** 

(0.239, 0.574) 
0.356** 

(0.102, 0.526) 

10. CBCL 80 0.177 
(-0.002, 0.332) 

0.228 
(-0.021, 0.482) 

0.226 
(-0.171, 0.599) 

0.098 
(-0.158, 0.363) 

0.543*** 

(0.351, 0.681) 
0.493*** 

(0.305, 0.628) 
0.187 

(-0.004, 0.394) 
0.190 

(-0.035, 0.398) 
.320 

(0.039, .651) 
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Supplementary Table 6 

Results of Exploratory Latent Class Analysis of the CBCL Attention Problems Empirical Syndrome Scale in the 

Two-Year Follow-Up Wave of Data from the ABCD Study 

Note. C = number of classes; q = number of free parameters; LL = log likelihood; LR Δ2 df = degrees of freedom for the likelihood ratio chi-

square test. LR Δ2 = Likelihood ratio chi-square test of the difference between the observed versus expected frequency tables for the 

categorical latent class indicators. LR Δ2 p = probability value for the likelihood ratio chi-square test; E = entropy; LMR = Lo-Mendell-

Rubin adjusted Likelihood Ratio Test when comparing the k to k – 1 class model; LMR p = probability value for the Lo-Mendell-Rubin 

adjusted Likelihood Ratio Test. 2*ΔLL = Two times the log likelihood difference between k and k – 1 models for the bootstrapped likelihood 

ratio test. BLRT p = probability value for the bootstrapped likelihood ratio test.  BIC = Bayesian Information Criterion; N = 646. 

1 Best loglikelihood values initially obtained using 80 and 16, then replicated using 160 and 32, random starting value perturbations and final 

stage optimizations. 2 Best loglikelihood values initially obtained using 320 and 64, then replicated using 640 and 128 random starting value 

perturbations and final stage optimizations.

3 Number of initial stage random starts for the k-1 class analysis model = 20; Number of final stage optimizations for the  k-1 class analysis 

model = 4 

4 Difference in the number of estimated parameters for k versus k – 1 models for the BLRT was 21. 

Bold typeface indicates preferred model based on converging evidence across fit statistics. 

Likelihood Ratio Δ2
Lo-Mendell-Rubin  

Likelihood Ratio Test 3 

Bootstrapped  

Likelihood Ratio Test 3,4 

C q LL LR Δ2 df LR Δ2 LR Δ2 p E LMR LMR p 2 *ΔLL BLRT p BIC 

1 1 20 -34,859.934 58,621 10919.886 1.000 69893.249 

2 1 41 -27,822.391 58,848 5169.178 1.000 .893 12028.061 <.001 12094.131 <.001 57981.168 

3 1 62 -26,456.642 58,910 4311.943 1.000 .885 2534.377 <.001 2548.298 <.001 55614.920 

4 1 83 -23,888.045 58,889 3989.107 1.000 .814 338.514 .011 340.373 <.001 55456.597 

5 1 104 -23,756.006 58,888 3965.017 1.000 .864 248.922 .046 250.289 <.001 55388.358 

6 1 125 -24,418.128 58,869 3794.840 1.000 .763 213.869 .007 15.044 <.001 55355.365 

7 2 146 -24,614.995 58,851 3698.435 1.000 .816 122.991 .035 123.666 <.001 55413.748 

8 2 167 -24,453.058 58,830 3590.495 1.000 .762 128.755 .038 129.462 <.001 55484.101 

9 2 188 -23,000.892 58,812 3539.246 1.000 .761 -999 -999 -999 -999 55571.474 

10 2 209 -23,954.556 58,786 3421.109 1.000 .768 175.272 .736 -999 -999 55671.257 
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Supplementary Table 7 

Results of Exploratory Factor Mixture Modeling of CBCL Attention Problems in the Two-Year Follow-Up Wave of Data from the ABCD 

Study 

Classes Model LL LR Δ2 df LR Δ2 LR Δ2 p Entropy BIC 

1 -27,271.773 58,932 4,007.773 1.0000 55,245.420 

2 
FMM-1 1 -27,729.425 58,853 5,191.192 1.0000 .895 58,051.317 

FMM-2 2 -28,039.115 58,932 4,031.630 1.0000 .564 55,253.961 

FMM-3 2 -24,616.476 58,920 3,660.710 1.0000 .614 54,902.574 

3 
FMM-11 -26,465.635 58,923 4,342.573 1.0000 .882 55,673.358 

FMM-2 4 -27,728.688 58,928 4001.844 1.0000 .472 55,270.346 

ZI FMM-11 -26,613.997 58,919 4,363.670 1.0000 .881 55,730.333 

ZI FMM-3 3 -23,511.314 58,907 3627.279 1.0000 .516 54,892.252 

4 FMM-1 1 -25,554.856 58,926 4,169.173 1.0000 .850 55,435.462 

FMM-2 1 -29,625.937 58,925 4,000.532 1.0000 .348 55,294.206 

ZI FMM-11 -25,896.665  58,929 4,191.474 1.0000 .851 55,428.748 

ZI FMM-2 4 -28,842.051 58,925 3,990.111 1.0000 .409 55,285.069 

Note. LL = log likelihood; LR Δ2 df = degrees of freedom for the likelihood ratio chi-square test. LR Δ2 = 
Likelihood ratio chi-square test of the difference between the observed versus expected frequency tables for the 
categorical latent class indicators. LR Δ2 p = probability value for the likelihood ratio chi-square test. BIC = 
Bayesian Information Criterion; FMM = factor mixture modeling; ZI = zero-inflated model; N = 5,820. 
1 Estimated using the robust maximum likelihood estimator (MLR) divided by the scaling correction factor for 
non-normality of ordinal data. Best loglikelihood values initially obtained using 80 and 16, then replicated using 
160 and 32 random starting value perturbations and final stage optimizations.  
2 Best loglikelihood values initially obtained using 160 and 32, then replicated using 320 and 64 random starting 
value perturbations and final stage optimizations. 
3 Best loglikelihood values initially obtained using 320 and 64, then replicated using 640 and 128 random 
starting value perturbations and final stage optimizations. 
4 The best log likelihood was not replicated across runs. 

Bold typeface indicates preferred model based on fit statistics. 

The following models were misspecified and did not converge on trustworthy estimates and therefore the results 
were not reported for these models: 2C FMM-4; 2C ZI (converged, but had zero cases in the zero-inflated class); 
3C FMM-3; 3C FMM-4; 3C ZI FMM-2; 3C ZI FMM-4; 4C FMM-3; 4C FMM-4; 4C ZI FMM-3; 4C ZI FMM-
4.
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Supplementary Figure 17. Item Probability Plot for CBCL Item 1 “Acts Young” for the Two-Class FMM-3 
Model. 
Note. 0 = Not True, 1 = Somewhat or Sometimes True, 2 = Very True or Often True. 
 

 

Supplementary Figure 18. Item Probability Plot for CBCL Item 4 “Fails to Finish” for the Two-Class FMM-3 
Model. 
Note. 0 = Not True, 1 = Somewhat or Sometimes True, 2 = Very True or Often True. 
 

 

Supplementary Figure 19. Item Probability Plot for CBCL Item 8 “Concentrate” for the Two-Class FMM-3 
Model. 
Note. 0 = Not True, 1 = Somewhat or Sometimes True, 2 = Very True or Often True. 
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Supplementary Figure 20. Item Probability Plot for CBCL Item 10 “Sit Still” for the Two-Class FMM-3 
Model. 
Note. 0 = Not True, 1 = Somewhat or Sometimes True, 2 = Very True or Often True. 
 

 
Supplementary Figure 21. Item Probability Plot for CBCL Item 13 “Confused” for the Two-Class FMM-3 
Model. 
Note. 0 = Not True, 1 = Somewhat or Sometimes True, 2 = Very True or Often True. 
 

 
Supplementary Figure 22. Item Probability Plot for CBCL Item 17 “Daydream” for the Two-Class FMM-3 
Model. 
Note. 0 = Not True, 1 = Somewhat or Sometimes True, 2 = Very True or Often True. 
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Supplementary Figure 23. Item Probability Plot for CBCL Item 41 “Impulsive” for the Two-Class FMM-3 
Model. 
Note. 0 = Not True, 1 = Somewhat or Sometimes True, 2 = Very True or Often True. 

 

Supplementary Figure 24. Item Probability Plot for CBCL Item 61 “Poor School” for the Two-Class FMM-3 
Model. 
Note. 0 = Not True, 1 = Somewhat or Sometimes True, 2 = Very True or Often True. 

 

Supplementary Figure 25. Item Probability Plot for CBCL Item 78 “Inattentive” for the Two-Class FMM-3 
Model. 
Note. 0 = Not True, 1 = Somewhat or Sometimes True, 2 = Very True or Often True. 
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Supplementary Figure 26. Item Probability Plot for CBCL Item 80 “Stares” for the Two-Class FMM-3 Model. 
Note. 0 = Not True, 1 = Somewhat or Sometimes True, 2 = Very True or Often True. 

 

 

 

Example 6 – Controlling for Method Variance 

To specify a T(M-1) model, one method is chosen as the reference method, which is 

indistinguishable from the target trait. An important property of this model is that because 

there is a reference method, there must always be one less method factor than the number of 

methods used to measure the target psychological attribute (hence the M-1 specification)65,66 . 

In other words, it is now understood that method effects are a fundamental element of 

psychological measurement that cannot be completely excluded from the psychological 

attribute being measured65,66. For this reason, even in multimethod approaches to 

psychological measurement, one of the methods must be considered the ‘reference method’ 

and incorporated into the construct as part of the assessment process65,66. The advantage of 

the T(M-1) approach is that the method factor represents the residual variances of the 

indicators not shared with the trait as measured by the reference method. Thus, the method 

effect(s) is/are represented as a latent variable(s)65,66. 
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As a first step, we sought to increase phenotypic resolution by combining the CBCL 

attention problems empirical syndrome scale items with the EATQ-R effortful control 

subscale items, that latter of which represents the adaptive end of the latent trait continuum 

for ADHD-related problems (example 4). We then incorporated cognitive variables known to 

be sensitive indicators of ADHD-related problems, response inhihinition67 and working 

memory68-70. We used stop-signal reaction time as measured on the stop signal task71 and 

estimated using the integration method72 and d-prime73 as a measure of working memory on 

four different conditions of a working memory 2-back task: 1) neutral faces; 2) positive faces; 

3) negative faces; and 4) places, obtained from the 2-year follow-up wave of data collection 

of the ABCD study74. The stop signal task has been well-described, including in the ABCD 

cohort75,76. For the n-back task, participants had to indicate whether a picture presented on a 

screen on each trial was a “Match” or “No Match” to stimuli presented two trials prior74. 

Working memory performance was defined as the response accuracy from the two-back 

condition for each of the four stimulus conditions. We also incorporated polygenic risk scores 

for ADHD from saliva samples obtained at baseline, at a p value threshold (PT) of .145 

(ADHD PRS), which was identified as the optimal threshold for explaining variance in the 

CBCL attention problems scale in PRSice77.  ADHD PRS quantifies the cumulative genetic 

risk for a disorder as a weighted sum of disorder-associated single nucleotide polymorphisms 

(SNPs) as identified in genome-wide association studies78-80. Participants of European 

ancestry were selected for all further analyses in order to match the genetic ancestry of the 

discovery genome wide association study (GWAS) for ADHD used to calculate PRSs (n = 

2,848)81,82. 

For the purposes of specifying the T(M-1) model, cognitive assessment was selected 

as the reference method, such that method bias associated with parent-report symptoms and 

temperament on the CBCL and EATQ-R could be excluded as a method factor from the 
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model65,66.  We used a listwise approach to case selection to ensure only participants with 

ADHD PRS and cognitive performance data were included in the analysis. The final T(M-1) 

model is displayed in Supplementary Figure 27. The attention problems construct was 

characterized by weak loadings from the cognitive variables (λ = .112 - .176) and modest (λ = 

.247, p < .001) to very strong (λ = .916, p < .001) loadings from the parent-report items on 

the CBCL Attentional Problems and EATQ-R Effortful Control items (Supplementary Table 

8). This factor represented the attention problems construct uncontaminated by method 

variance from parent-report, which was captured by a residual method factor. The residual 

item loadings on this method factor ranged from very weak (λ = .005, p = .897) to moderately 

strong (λ = .721, p < .001) (Supplementary Table 9) and this factor did not have statistically 

significant variance (φ = .016, p = .829), further confirming its status as a junk factor (i.e., 

representing residual variance related to parent-report not of substantive interest).  

We regressed the attention problems factor onto ADHD PRS and found that ADHD 

PRS explained 1.0% of the variance in the attention problems latent trait factor with 

cognition as the reference method. In contrast, the method factor was not meaningfully 

related to ADHD PRS (φ = -.043, SE = .026, p = .101). Thus, we constrained their association 

to zero (Supplementary Figure 27). Furthermore, we were unable to get a model without 

cognition as the reference method and a method factor for the CBCL and EATQ-R items to 

converge. These results provide evidence that incorporation of multi-method approaches, 

specified as a T(M-1) model, can yield meaningful results in biology-psychopathology 

association studies.  
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Supplementary Figure 27.  Trait Method Minus One [T(M-1] model of CBCL attention problems empirical syndrome scale augmented with the EATQ-R effortful control items in the two-year follow-up data wave of 
the ABCD study (N = 2,166). Cognition was the reference method, with parent-report items forming the method factor and its variance excluded from the attention problems latent variable. Note that polygenic risk for 
ADHD explained variance in the attention problems factor (1.3%), but was unrelated to the parent-report method factor.
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Supplementary Table 8 

Standardized Parameter Estimates, Standard Errors, and Probability Values of Model Parameter Estimates 

from the T(M-1) Model of Attention Problems for the Reference Method Variables and the Attention Problems 

Item Factor Loadings 

Parameter Standardized Estimate 
(λ) 

Standard Error (SE) Probability value (p) 

λRM1 -0.156 0.030 <.001 
λRM2 0.129 0.030 <.001 
λRM3 0.156 0.030 <.001 
λRM4 0.124 0.031 <.001 
λRM5 0.192 0.029 <.001 
θεRM1 0.976 0.009 <.001 
θεRM2 0.983 0.008 <.001 
θεRM3 0.976 0.009 <.001 
θεRM4 0.985 0.005 <.001 
θεRM5 0.963 0.011 <.001 
λAP1 -0.596 0.024 <.001 
λAP2 -0.791 0.025 <.001 
λAP3 -0.923 0.013 <.001 
λAP4 -0.765 0.019 <.001 
λAP5 -0.683 0.033 <.001 
λAP6 -0.579 0.025 <.001 
λAP7 -0.733 0.021 <.001 
λAP8 -0.679 0.042 <.001 
λAP9 -0.913 0.015 <.001 
λAP10 -0.676 0.032 <.001 
λAP11 0.724 0.043 <.001 
λAP12 0.281 0.029 <.001 
λAP13 0.507 0.020 <.001 
λAP14 0.414 0.027 <.001 
λAP15 0.439 0.049 <.001 
λAP16 0.611 0.033 <.001 
λAP17 0.462 0.041 <.001 
λAP18 0.579 0.019 <.001 
λAP19 0.496 0.026 <.001 
λAP20 0.664 0.028 <.001 
λAP21 0.530 0.062 <.001 
λAP22 0.527 0.072 <.001 
λAP23 0.614 0.044 <.001 
λAP24 0.538 0.067 <.001 
λAP25 0.243 0.027 <.001 
λAP26 0.693 0.026 <.001 
λAP27 0.600 0.038 <.001 
λAP28 0.633 0.031 <.001 

Note. λ = factor loading; θε = error/residual variance; RM = reference method; AP = attention problems. 
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Supplementary Table 9 

Standardized Parameter Estimates, Standard Errors, and Probability Values of Model Parameter Estimates 

from the T(M-1) Model of Attention Problems for the Method Factor Item Loadings 

Parameter Standardized Estimate 
(λ) 

Standard Error (SE) Probability value (p) 

λMF1 0.031 0.020 0.120 
λMF2 -0.211 0.078 0.007 
λMF3 -0.082 0.092 0.374 
λMF4 0.050 0.080 0.529 
λMF5 -0.083 0.084 0.322 
λMF6 0.008 0.062 0.895 
λMF7 -0.007 0.076 0.922 
λMF8 -0.409 0.065 <.001 
λMF9 -0.088 0.093 0.344 
λMF10 0.007 0.077 0.927 
λMF11 0.414 0.073 <.001 
λMF12 0.190 0.036 <.001 
λMF13 -0.038 0.060 0.531 
λMF14 0.057 0.049 0.247 
λMF15 0.440 0.051 <.001 
λMF16 0.295 0.061 <.001 
λMF17 0.356 0.052 <.001 
λMF18 0.020 0.062 0.749 
λMF19 0.095 0.056 0.089 
λMF20 0.230 0.069 0.001 
λMF21 0.635 0.052 <.001 
λMF22 0.744 0.051 <.001 
λMF23 0.449 0.058 <.001 
λMF24 0.689 0.054 <.001 
λMF25 0.064 0.035 0.066 
λMF26 0.209 0.072 0.003 
λMF27 0.375 0.057 <.001 
λMF28 0.266 0.062 <.001 

Note. λ = factor loading; MF = method factor. 
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The Distinction Between the Child Behavior Checklist and the Hierarchical Taxonomy 

of Psychopathology 

The Child Behavior Checklist (CBCL) is dimensional and hierarchical like the 

Hierarchical Taxonomy of Psychopathology (HiTOP) model and is used widely around the 

world including in large, consortia-sized datasets (e.g., Adolescent Brain and Cognitive 

Development study)83, but has failed to yield robust findings of the neural and genetic 

correlates of developmental psychopathology (e.g., Marek et al., 2022)4. It is also a HiTOP-

conformant measure. The use of HiTOP-conformant measures enables broadband 

dimensional and hierarchical measurement of psychopathology, circumventing issues of 

arbitrary clinical cut-offs and loss of power, as well as the comorbidity problem. However, 

the problems of phenotypic complexity and variable-centred heterogeneity can only be 

resolved when these dimensions are explicitly modelled hierarchically. Common usages of 

the CBCL rely on subscale raw scores4,6,25, which do not address the issues of phenotypic 

complexity and variable-centred heterogeneity. The other limitation of the CBCL is that its 

development was based on optimising the differentiation of clinically-referred versus non-

referred children (i.e., criterion keying)6,25. Thus, the CBCL provides high levels of 

information (i.e., reliability) at the clinical and subclinical end of the psychopathology 

spectrum, but very low information at the normative end of the continuum (example 2)19. 

Thus, the CBCL has poor phenotypic resolution as we have demonstrated in example 2 and 

cannot reliably rank-order individuals in the normative range, limiting its utility in biology-

psychopathology association studies. In contrast, the broader HiTOP model combines both 

clinical components and maladaptive traits, the latter of which characterize trait levels across 

the full spectrum of individual differences84,85. Furthermore, some HiTOP conformant 

measures, including the Computerized Adaptive Assessment of Personality Disorder (CAT-

PD) and Externalizing Spectrum Inventory – Brief Form (ESI-BF) have been optimised using 
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techniques such as item response theory to measure individual differences with high precision 

across the latent trait continuum84,86.  For these reasons, measures of the HiTOP model are 

expected to yield more robust findings than the CBCL. 
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