Structural Brain Correlates of Childhood Inhibited Temperament: An ENIGMA-Anxiety Mega-analysis

Janna Marie Bas-Hoogendam, PhD, Rachel A. Bernstein, BA, Brenda E. Benson, PhD, Kristin A. Buss, PhD, Kelley E. Gunther, MSc, Koraly Pérez-Edgar, PhD, Giovanni A. Salum, PhD, Andrea Jackowski, PhD, Rodrigo A. Bressan, PhD, André Zugman, MD, PhD, Kathryn A. Degnan, PhD, Courtney A. Filippi, PhD, Nathan A. Fox, PhD, Heather A. Henderson, PhD, Alva Tang, PhD, Selin Zeytinoglu, PhD, Anita Harrewijn, PhD, Manon H.J. Hillegers, MD, PhD, Tonya White, MD, PhD, Marinus H. van IJzendoorn, PhD, Carl E. Schwartz, MD, PhD, Julia M. Felicione, MSc, Kathryn A. DeYoung, MA, MS, Alexander J. Shackman, PhD, Jason F. Smith, PhD, Rachael Tillman, PhD, Yvonne H.M. van den Berg, PhD, Antonius H.N. Cillessen, PhD, Karin Roelofs, PhD, Anna Tyborowska, PhD, Shirley Y. Hill, PhD, Marco Battaglia, MD, Marco Tettamanti, PhD, Lea R. Dougherty, PhD, Jingwen Jin, PhD, Daniel N. Klein, PhD, Hoi-Chung Leung, PhD, Suzanne N. Avery, PhD, Jennifer Urbano Blackford, PhD, Jacqueline A. Clauss, MD, PhD, Elizabeth P. Hayden, PhD, Pan Liu, PhD, Matthew R.J. Vandermeer, PhD, H. Hill Goldsmith, PhD, Elizabeth M. Planalp, PhD, Thomas E. Nichols, PhD, Paul M. Thompson, PhD, P. Michiel Westenberg, PhD, Nic J.A. van der Wee, MD, PhD, Nynke A. Groenewold, PhD, Dan J. Stein, MD, PhD, Anderson M. Winkler, MD, DPhil, Daniel S. Pine, MD, PhD, on behalf of the ENIGMA-Anxiety Working Group

PII: S0890-8567(22)00299-4
DOI: https://doi.org/10.1016/j.jaac.2022.04.023
Reference: JAAC 3865

To appear in: Journal of the American Academy of Child & Adolescent Psychiatry

Received Date: 9 August 2021
Revised Date: 25 March 2022
Accepted Date: 14 April 2022

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Inc. on behalf of the American Academy of Child and Adolescent Psychiatry.
Structural Brain Correlates of Childhood Inhibited Temperament: An ENIGMA-Anxiety
Mega-analysis
ENIGMA-Anxiety mega-analysis of cIT

Janna Marie Bas-Hoogendam, PhD, Rachel A. Bernstein, BA, Brenda E. Benson, PhD,
Kristin A. Buss, PhD, Kelley E. Gunther, MSc, Koraly Pérez-Edgar, PhD, Giovanni A.
Salum, PhD, Andrea Jackowski, PhD, Rodrigo A. Bressan, PhD, André Zugman, MD, PhD,
Kathryn A. Degnan, PhD, Courtney A. Filippi, PhD, Nathan A. Fox, PhD, Heather A.
Henderson, PhD, Alva Tang, PhD, Selin Zeytinoglu, PhD, Anita Harrewijn, PhD, Manon H.
J. Hillegers, MD, PhD, Tonya White, MD, PhD, Marinus H. van IJzendoorn, PhD, Carl E.
Schwartz, MD, PhD, Julia M. Felicione, MSc, Kathryn A. DeYoung, MA, MS, Alexander J.
Shackman, PhD, Jason F. Smith, PhD, Rachael Tillman, PhD, Yvonne H.M. van den Berg,
PhD, Antonius H.N. Cillessen, PhD, Karin Roelofs, PhD, Anna Tyborowska, PhD, Shirley Y.
Hill, PhD, Marco Battaglia, MD, Marco Tettamanti, PhD, Lea R. Dougherty, PhD, Jingwen
Jin, PhD, Daniel N. Klein, PhD, Hoï-Chung Leung, PhD, Suzanne N. Avery, PhD, Jennifer
Urbano Blackford, PhD, Jacqueline A. Clauss, MD, PhD, Elizabeth P. Hayden, PhD, Pan Liu,
PhD, Matthew R.J. Vandermeer, PhD, H. Hill Goldsmith, PhD, Elizabeth M. Planalp, PhD,
Thomas E. Nichols, PhD, Paul M. Thompson, PhD, P. Michiel Westenberg, PhD, Nic J.A.
van der Wee, MD, PhD, Nynke A. Groenewold, PhD, Dan J. Stein, MD, PhD, Anderson M.
Winkler, MD, DPhil, Daniel S. Pine, MD, PhD, on behalf of the ENIGMA-Anxiety Working
Group

Supplemental Material

Accepted June 6, 2022

This article was reviewed under and accepted by ad hoc editor Guido K.W. Frank, MD.

Drs. Bas-Hoogendam and Westenberg are with Leiden University, Leiden, the Netherlands.
Drs. Bas-Hoogendam and van der Wee are with Leiden University Medical Center, Leiden,
the Netherlands. Drs. Bas-Hoogendam, Westenberg, and van der Wee are with Leiden
Institute for Brain and Cognition, Leiden, The Netherlands. Drs. Bas-Hoogendam, Benson,
Zugman, Filippi, Winkler, and Pine, and Ms. Bernstein are with the National Institute of
Mental Health, Bethesda, Maryland. Drs. Buss and Pérez-Edgar, and Ms. Gunther are with
Pennsylvania State University, University Park. Dr. Salum is with Hospital de Clínicas de
Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. Drs.
Jackowski and Bressan are with Federal University of São Paulo, São Paulo, Brazil. Dr.
Degnan is with The Catholic University of America, Washington, DC. Drs. Filippi, Fox,
Tang, Zeytinoglu, Shackman, Smith, Tillman, and Dougherty, and Ms. DeYoung are with the
University of Maryland, College Park. Dr. Henderson is with the University of Waterloo,
Waterloo, Ontario, Canada. Dr. Harrewijn is with Erasmus University Rotterdam, Rotterdam,
the Netherlands. Drs. Hillegers and White are with Erasmus University Medical Center,
Rotterdam, the Netherlands. Dr. IJzendoorn is with University College London, United
Kingdom. Drs. Schwartz and Clauss are with Massachusetts General Hospital, Harvard
Medical School, Boston. Ms. Felicione is with Tufts University, Medford, Massachusetts.
Drs. van den Berg, Cillessen, Roelofs, and Tyborowska are with Radboud University
Nijmegen, the Netherlands. Dr. Hill is with the University of Pittsburgh School of Medicine,
Pennsylvania. Dr. Battaglia is with the University of Toronto, Ontario, Canada, and the
Centre for Addiction and Mental Health, Toronto, Ontario, Canada. Dr. Tettamanti is with the
University of Trento, Rovereto, Italy. Dr. Jin is with The University of Hong Kong, Hong
Kong. Dr. Klein and Leung are with Stony Brook University, New York. Drs. Avery and Blackford are with Vanderbilt University Medical Center, Nashville, Tennessee. Dr. Blackford is also with the University of Nebraska Medical Center, Omaha. Drs. Hayden, Liu, and Vandermeer are with Western University, London, Ontario, Canada. Dr. Liu is also with North Dakota State University, Fargo. Drs. Goldsmith and Planalp are with the University of Wisconsin-Madison. Dr. Nichols is with the University of Oxford, United Kingdom. Dr. Thompson is with the University of Southern California, Marina del Rey. Drs. Groenewold and Stein are with the University of Cape Town, Cape Town, South Africa.

Dr. Winkler served as the statistical expert for this research.

Author Contributions

Conceptualization: Bas-Hoogendam, Zugman, Thompson, Westenberg, van der Wee, Winkler, Pine

Data curation: Bas-Hoogendam, Bernstein, Benson, Buss, Gunther, Pérez-Edgar, Salum, Jackowski, Bressan, Degnan, Filippi, Fox, Henderson, Tang, Zeytinoglu, Harrewijn, Hillegers, White, van IJzendoorn, Schwartz, Felicone, DeYoung, Shackman, Smith, Tillman, van den Berg, Cillessen, Roelofs, Tyborowska, Hill, Battaglia, Tettamanti, Dougherty, Jin, Klein, Leung, Avery, Blackford, Clauss, Hayden, Liu, Vandermeer, Goldsmith, Planalp, Winkler
Formal analysis: Bas-Hoogendam, Benson, Winkler, Pine

Funding acquisition: Bas-Hoogendam

Investigation: Bas-Hoogendam, Winkler

Methodology: Bas-Hoogendam, Benson, Nichols, Thompson, Westenberg, van der Wee, Groenewold, Stein, Winkler, Pine

Project administration: Bas-Hoogendam, Bernstein, Benson, Groenewold, Winkler, Pine

Resources: Westenberg, Winkler, Pine

Software: Winkler

Supervision: Westenberg, Pine

Visualization: Bas-Hoogendam, Winkler

Writing – original draft: Bas-Hoogendam

Writing – review and editing: Bernstein, Benson, Buss, Gunther, Pérez-Edgar, Salum, Jackowski, Bressan, Zugman, Degnan, Filippi, Fox, Henderson, Tang, Zeytinoglu, Harrewijn, Hillegers, White, van IJzendoorn, Schwartz, Felicione, DeYoung, Shackman, Smith, Tillman, van den Berg, Cillessen, Roelofs, Tyborowska, Hill, Battaglia, Tettamanti, Dougherty, Jin, Klein, Leung, Avery, Blackford, Claus, Hayden, Liu, Vandermeer, Goldsmith, Planalp, Nichols, Thompson, Westenberg, van der Wee, Groenewold, Stein, Winkler, Pine

The ENIGMA-Anxiety Working Group: https://enigma.ini.usc.edu/ongoing/enigma-anxiety/

Disclosure: Dr. Pérez-Edgar has received funding from the National Institute on Drug Abuse (U01DA055361-01) and NIMH (R56MH126349, R01MH109692, and R01MH130007); royalties from Springer Press; and honorarium for lectures to professional audiences and for editing *Developmental Psychology*. Dr. Salum has reported that the Brazilian High-Risk Cohort for Mental Conditions was supported with grants from the National Institute of Development Psychiatric for Children and Adolescent (INPD), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; 465550/2014-2), and the São Paulo Research Foundation (2014/50917-0). Dr. Jackowski has received grant support from CNPq 427215/2018-8. Dr. Degnan has received grant support from a subaward from NIMH (U01MH093349) via the University of Maryland and honoraria for associate editor duties with *Developmental Psychology*. Dr. Filippi has received a NARSAD Young Investigator Grant from the Brain and Behavior Foundation (#28024) and the Intramural Research Program of the NIMH through project ZIA-MH-002782. Dr. Fox has received grant support from NIMH (U01MH093349), NICHD, the National Science Foundation (NSF), the National Institutes of Health Environmental influences on Child Health Outcomes (NIH ECHO) consortium, the Russell Sage Foundation, and the Lumos Foundation; royalties from Springer Press, Guilford Press, and Harvard University Press; and honoraria for lectures to professional audiences. Dr. Henderson has received grant support from the Social Sciences and Humanities Research Council of Canada and the Canada Foundation for Innovation. Dr. White has received grant or research support from the Sophia Children’s Hospital Foundation. She has served on the advisory board/DSMB of the University of Bergen Center for Brain Plasticity. She has served on the editorial board of *Neuropsychinformatics* and as Editor-in-Chief of *Aperture Neuro*. Drs. Roelofs and Tyborowska have reported that past MR scanning of the Nijmegen Longitudinal Study (NLS) was funded by European Research Council starting grant (ERC_StG2012_313749 awarded to K.R.) and a FP7-HEALTH-2013-INNOVATION grant (602805-2). Dr. Hill has received grant support from the National Institute on Alcohol Abuse and Alcoholism (AA021746 and AA021746-05S1-Supplement). Dr. Thompson has received partial research support from Biogen, Inc., unrelated to this work, and NIH Big Data to Knowledge (BD2K) award (U54 EB020403). Dr. van der Wee has received grant support from the EU Innovative Medicines Initiative 'Psychiatric Ratings using Intermediate Stratified...
Markers’ 2 (IMI PRISM 2) with grant agreement nr 101034377. Dr. Stein has received research grants and/or consultancy honoraria from Discovery Vitality, Johnson & Johnson, Kanna, Lundbeck, Orion, Sanofi, Servier, and Takeda. Ms. Gunther has received a NSF Graduate Research Fellowship DGE1255832. Drs. Bas-Hoogendam, Benson, Buss, Bressan, Zugman, Tang, Zeytinoglu, Harrewijn, Hillegers, van IJzendoorn, Schwartz, Shackman, Smith, Tillman, van den Berg, Cillessen, Battaglia, Tettamanti, Dougherty, Jin, Klein, Leung, Avery, Blackford, Clauss, Hayden, Liu, Vandermeer, Goldsmith, Planalp, Nichols, Westenberg, Groenewold, Winkler, and Pine and Mss. Bernstein, Felicione, and DeYoung have reported no biomedical financial interests or potential conflicts of interest.

Correspondence to Janna Marie Bas-Hoogendam, PhD, Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands, Pieter de la Court Building, room 3.B47; e-mail: j.m.hoogendam@fsw.leidenuniv.nl
Study Synopsis

Introduction Summary

Temperament involves stable behavioral and emotional tendencies that differ between individuals, which can be first observed in infancy or early childhood and relate to behavior in many contexts and over many years. One of the most rigorously characterized temperament classifications relates to individuals’ tendency to avoid the unfamiliar and to withdraw from unfamiliar people, objects, and unexpected events. This temperament is referred to as ‘behavioral inhibition’ or ‘inhibited temperament’ (IT). IT is a moderately heritable trait that can be measured in multiple species. In humans, levels of IT can be quantified from the first year of life through direct behavioral observations or reports by caregivers or teachers. Similar approaches, as well as self-report questionnaires on current and/or retrospective levels of IT, can be used later in life.

Variations in IT are present on a continuous scale within the population, and research suggests that around 20% of young children are characterized by high IT, which is in general stable over time. Considerable data suggest that this high childhood IT (cIT) has adverse long-term consequences: infants with cIT often become more reserved adults, and, on average, such infants exhibit poorer outcomes than non-inhibited infants with respect to social relationships and internalizing psychopathology. More specifically, almost half of all children with elevated and stable cIT will develop social anxiety disorder (SAD) later in life, compared with only 12% of non-inhibited children. Thus, cIT predicts risk for later psychopathology, especially SAD.

Several neuroimaging studies have examined neurobiological correlates of cIT. Such research is important, since brain characteristics—including brain structure, function, and
connectivity—may mediate the cIT-related risk for poor outcomes10. Previous studies have linked cIT to the structure and function of brain networks involved in emotion perception, experience, and regulation1. These brain networks involve the dorsal (caudal) and ventral (rostral) anterior cingulate cortex (ACC), insula, amygdala, dorsolateral and medial prefrontal cortex (PFC), orbitofrontal cortex (OFC) and striatum (cf.1,10), all of which have also been implicated in familial risk for SAD11. In addition, translational work on anxious temperament has indicated involvement of the hippocampus3,12. Despite this progress, the few available studies on the neural structural correlates of cIT are often restricted to specific regions of interest, while cortical surface area and cortical thickness have only been examined in one study, with an exploratory approach13. Furthermore, most findings with respect to brain structure are unique to a specific sample, and cross-study comparisons are limited by relatively small sample sizes and failure to consider potential modifying variables such as age and biological sex.

In this ENIGMA-Anxiety project14, we aim to extend previous work by examining brain structure associated with cIT in a large dataset, assembling data acquired at 12 research centers worldwide (17 samples, $N = 4,681$; Table 1). Compared to the individual studies, this new study is better powered due to the larger number of research participants available for analysis. Moreover, by combining data through a mega-analytic approach, the present study facilitates the differentiation of consistent, generalizable findings from false-positives that could emerge from smaller-sampled studies. Such work has the potential to establish reproducible anatomical correlates, and could inform the development of mechanistic studies and intervention research with clinical relevance15.

We expect to corroborate findings in brain circuits found previously (involved in processing fear, reward and emotion regulation)1,10, with small-to-medium effect sizes. We hypothesize
that structural alterations in brain regions involved in these processes, in particular gray matter volumes of multiple subcortical structures (amygdala, hippocampus, striatum including caudate and putamen), and characteristics of several frontal and temporal cortical areas, (OFC, ACC, insula superior temporal gyrus, transverse gyrus, fusiform gyrus) are neural substrates of cIT.

Method Summary

This ENIGMA-Anxiety working group project will include individual participant data assembled from studies where participants underwent MRI-scanning (T1-weighted anatomical MRI-scans) between 6 and 25 years of age. Regardless of age at scan, all participants will be phenotyped for cIT (defined as age ≤ 12 years). These temperament assessments could be behavioral observations in childhood, parental reports, or self-report questionnaires on current or retrospective temperament. We will perform a mega-analysis with a whole-brain approach (regional and vertex-wise; familywise error rate (FWER)-corrected) and investigate the relation between cIT (continuous) and three distinct neuroanatomical metrics (determined using FreeSurfer-software), namely volumes of subcortical structures, cortical thickness and cortical surface area. Additionally, analyses will be performed in three subsets, based on the method and thus age at which cIT was determined: 1st (early-life) behavioral observations, 2nd parental/teacher reports during childhood, and 3rd self-report measures acquired during late childhood/adolescence. A fourth sensitivity analysis will exclude samples with retrospective measures of cIT.

Significance Summary

This initiative is the first mega-analysis of brain structure associated with the temperamental risk for developing internalizing psychopathology. This provides the possibility of detecting
novel cIT-related brain alterations and clarifying inconsistent findings of prior work10. Mega-analyses combine existing datasets to increase the overall sample size. This is particularly valuable for data acquired in vulnerable participants which are often difficult to recruit. Such studies exemplify next-generation science: previous studies within the ENIGMA-Consortium have resulted in important insights in the neurobiology of psychiatric conditions17. These discoveries reflect the advantages of large-scale data-analyses for testing the reproducibility and robustness of neuroimaging findings17. We expect the current project to provide similar insights, increasing our understanding of the development of psychopathology in youth at risk. In addition, by pre-registering the study in advance of performing the analyses, we hope to contribute to a reduction of the potential publication bias in the field, and to advance a more complete scientific record on this topic (cf.18).
<table>
<thead>
<tr>
<th>Sample (location)</th>
<th>Type of sample</th>
<th>n (n female) with MRI and cIT data</th>
<th>Design*</th>
<th>Age MRI-scan (range; mean ± SD)</th>
<th>Age cIT (range; mean ± SD)</th>
<th>Measure of cIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brains study (Pennsylvania State University, USA)</td>
<td>Oversampled for high/low cIT data</td>
<td>130 (72)</td>
<td>C</td>
<td>9.2 - 13.2 y (10.8 ± 1.0)</td>
<td>9.2 - 13.2 y (10.8 ± 1.0)</td>
<td>BIQ – parent rated</td>
</tr>
<tr>
<td>Brazilian High Risk Cohort (National Institute of Developmental Psychiatry (INPD), Brazil)</td>
<td>Community sample and a high-risk sample of children with increased familial risk for mental disorders</td>
<td>678 (290)</td>
<td>C</td>
<td>5.8 - 13.0 y (9.7 ± 1.6)</td>
<td>5.8 - 13.0 y (9.7 ± 1.6)</td>
<td>EATQ-R - shyness scale</td>
</tr>
<tr>
<td>Cohort 3 / 4 (University of Maryland, College park Maryland, USA)</td>
<td>Community sample: prospective longitudinal study on infants thought likely to display behavioral inhibition later in infancy and early childhood</td>
<td>95 (51)</td>
<td>L</td>
<td>13.3 - 21.1 y (18.0 ± 1.9)</td>
<td>Around 24 months (no data at individual level)</td>
<td>Standard laboratory observations: composite score of stranger, robot, tunnel episodes</td>
</tr>
<tr>
<td>Generation R - sample with behavioral observations (Erasmus University Medical Center, Rotterdam, the Netherlands)</td>
<td>Longitudinal community sample</td>
<td>584 (297)</td>
<td>L</td>
<td>8.7 - 12.0 y (10.2 ± 0.6)</td>
<td>34.7 - 44.2 months (37.4 ± 1.4)</td>
<td>Standard laboratory observations: stranger approach and jumping spider episode from the Lab-TAB</td>
</tr>
<tr>
<td>Generation R - sample with questionnaire data (Erasmus University Medical Center, Rotterdam, the Netherlands)</td>
<td>Longitudinal community sample</td>
<td>1,982 (1,030)</td>
<td>L</td>
<td>8.6 - 12.0 y (10.0 ± 0.5)</td>
<td>4.5 - 11.8 months (6.7 ± 1.1)</td>
<td>Infant behavior questionnaire – revised (IBQ-r) – fear subscale</td>
</tr>
<tr>
<td>Maryland-PAX (University of Maryland, Maryland, USA)</td>
<td>30-month longitudinal study on a sample of first-year university students enriched for internalizing risk</td>
<td>220 (109)</td>
<td>C</td>
<td>18 - 19 y (18.3 ± 0.4)</td>
<td>Retrospective: remembered inhibited behaviors in childhood</td>
<td>RBI</td>
</tr>
<tr>
<td>Maryland-TAX (University of Maryland, Maryland, USA)</td>
<td>Cross-sectional community sample</td>
<td>53 (28)</td>
<td>C</td>
<td>13 - 17 y (15.0 ± 1.2)</td>
<td>Retrospective: remembered inhibited behaviors in childhood</td>
<td>RSRI – child rated</td>
</tr>
<tr>
<td>Nijmegen Longitudinal Study (Radboud University, Nijmegen, the Netherlands)</td>
<td>Longitudinal community sample</td>
<td>71 (31)</td>
<td>L</td>
<td>17 y</td>
<td>1.20 - 1.28 y (1.24 ± 0.02)</td>
<td>Standard laboratory observations at 15 months of age: stranger and robot episodes</td>
</tr>
<tr>
<td>Pittsburgh (University of Pittsburgh School of Medicine, USA)</td>
<td>High and low-risk (control) children/adolescents from ongoing family studies</td>
<td>15 (3)</td>
<td>L</td>
<td>19.2 - 24.8 y (21.5 ± 1.7)</td>
<td>4.1 - 6.4 y (5.1 ± 0.7)</td>
<td>Laboratory observations during peer play</td>
</tr>
<tr>
<td>Sample (location)</td>
<td>Type of sample</td>
<td>n (n female) with MRI and cIT data</td>
<td>Design*</td>
<td>Age MRI-scan (range; mean ± SD)</td>
<td>Age cIT (range; mean ± SD)</td>
<td>Measure of cIT</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
<td>-----------------------------------</td>
<td>---------</td>
<td>---------------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>San Raffaele (Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milan, Italy)</td>
<td>Community sample</td>
<td>20 (8)</td>
<td>L</td>
<td>13 – 16 y (14.8 ± 1.1)</td>
<td>8 – 10 y (9.1 ± 0.7)</td>
<td>Empirical composite index</td>
</tr>
<tr>
<td>SDAN (NIMH, Bethesda, Maryland, USA)</td>
<td>Treatment seeking children and control group of healthy volunteers.</td>
<td>55 (26)</td>
<td>C</td>
<td>7.3 - 14.6 y (10.3 ± 1.7)</td>
<td>8.0 - 12.8 y (10.4 ± 1.5)</td>
<td>BIQ – child rated</td>
</tr>
<tr>
<td>Stony Brook Temperament Study (Stony Brook University, New York, USA)</td>
<td>Community sample; MRI subsample oversampled for youth with temperamental high negative emotionality, low positive emotionality, and high behavioral inhibition at age 3</td>
<td>74 (31)</td>
<td>L</td>
<td>9 - 12 y (10.2 ± 0.9)</td>
<td>2.9 - 4.0 y (3.4 ± 0.3)</td>
<td>Lab-TAB: 3 Kagan-like tasks around age 3</td>
</tr>
<tr>
<td>TOTS (University of Maryland, Maryland, USA)</td>
<td>Longitudinally followed sample of children selected at 4 months of age based on their behavior in the laboratory</td>
<td>96 (56)</td>
<td>L</td>
<td>9.1 - 19.5 y (11.4 ± 2.1)</td>
<td>1.9 - 2.7 y (2.1 ± 0.2)</td>
<td>Standard laboratory observations (composite score of stranger, robot, tunnel episodes)</td>
</tr>
<tr>
<td>Vanderbilt – children (Vanderbilt University Medical Center, Nashville, USA)</td>
<td>Study with extreme discordant phenotypes approach: inhibited and uninhibited children at the extreme ends</td>
<td>55 (33)</td>
<td>C</td>
<td>8 - 12 y (9.3 ± 1.1)</td>
<td>8 – 12 y (9.3 ± 1.1)</td>
<td>BIQ – child rated</td>
</tr>
<tr>
<td>Vanderbilt - young adults (Vanderbilt University Medical Center, Nashville, USA)</td>
<td>Study with extreme discordant phenotypes approach: inhibited and uninhibited young adults at the extreme ends</td>
<td>150 (83)</td>
<td>C</td>
<td>18 – 25 y (21.8 ± 2.0)</td>
<td>Retrospective: remembered inhibited behaviors in childhood</td>
<td></td>
</tr>
<tr>
<td>Western University (The Brain and Mind Institute, Western University, Ontario, Canada)</td>
<td>Children selected based on presence/absence maternal depression</td>
<td>87 (38)</td>
<td>L</td>
<td>9.2 - 12.4 y (11.1 ± 0.7)</td>
<td>3.0 - 4.0 y (3.4 ± 0.3)</td>
<td>Lab-TAB: risk room, stranger approach and jumping spider</td>
</tr>
<tr>
<td>Wisconsin Twin Project - RDoC twin study (University of Wisconsin–Madison, Madison, WI, USA)</td>
<td>Longitudinally followed samples of twins, recruited from statewide birth records for birth cohorts 1989 - 2004</td>
<td>316 (145)</td>
<td>L</td>
<td>15.1 – 23.9 y (17.5 ± 1.6)</td>
<td>6.5 – 9.0 y (7.5 ± 0.5)</td>
<td>Ratings on Approach and Shyness from a 3-hour home visit, and scores from videotaped reactions to the “Conversation with a Stranger” episode of Lab-TAB.</td>
</tr>
</tbody>
</table>

Total N | 4,681 (2,331) |
Note: BI = behavioral inhibition; BIQ = Behavioral Inhibition Questionnaire; CBQ = Child Behavior Questionnaire; cIT = childhood inhibited temperament; EATQ-R = Early Adolescent Temperament Questionnaire; Lab-TAB = Laboratory Temperament Assessment Battery; RMBI = Retrospective Measure of Behavioral Inhibition; RSRI = Retrospective Self-report of Inhibition.

a With respect to timepoint temperament assessment and MRI-scan, for data used in this study: cross-sectional (C) or longitudinal (L)
References

doi:https://doi.org/10.1016/j.biopsych.2020.10.004

doi:10.1038/nature09282

doi:https://doi.org/10.1016/j.dcn.2020.100776

The experience of the generalized anxiety disorder working group. *Hum Brain Mapp.*

